
Physics 114 Statistical Mechanics Spring 2018

Seminar 5

Overview:

This is a big week, where we begin to do statistical mechanics in earnest.
We talk about thermodynamic quantities, but they are all derivable from
fundamental statistical arguments. One major topic this week is the statis-
tical definition of entropy. Section 14.8 of B&B calls S = −k Pi lnPi the
Gibbs entropy of a thermodynamic system. B&B Ch. 15 defines the Shannon
entropy, which applies beyond thermodynamics, to fields like cryptography,
data compression and quantum mechanics.

Another major concept is the partition function. Partition functions are
“just” a normalizing factor ... but this is a crucial thing. We need the right
normalization when taking thermodynamic averages. By counting states, the
partition function and its derivatives tell us every thermodynamic quantity
we might want to know.

We’ll discuss 2 kinds of sets of states. (A set of states is an ensemble.)
The first is the Microcanonical ensemble, in which E, V,N are the fixed quan-
tities. Though sometimes people don’t call it a “partition function” the total
number of micro states, Ω(E, V,N), plays an equivalent role in this ensemble.
The other is the Canonical ensemble, in which T, V,N are the fixed quanti-
ties. Such a system would have solid, diathermic walls and be immersed in
a heat bath. In the canonical ensemble, the partition function is commonly
written as Z(T, V,N). The Canonical partition function is such a big player
in stat mech that we will continue to study it next week. This week, we will
use it for two important purposes: deriving the law of equipartition of energy
and for the Maxwell-Boltzmann distribution of velocities.

Required Reading:
G&T Sections

• Section 3.4.2

• Sections 4.2-4.6

• Sections 6.1, 6.2

B&B sections

• Sections 4.1-4.6



• Sections 5.1 and 5.2 (Optional - but good for experimentalists: 5.3)

• Sections 14.5-14.8

• Section 15

• Section 19

Recommended Reading:

• The regular reading is so long, I hesitate to suggest anything else. For
whenever you have time and interest, there are some very readable
papers on information entropy linked to our Moodle Site.

• The original link to Claude Shannon’s paper in information entropy is
here: http://math.harvard.edu/~ctm/home/text/others/shannon/
entropy/entropy.pdf

Concept checklist from Readings:

• This week, we do just a bit more with basic probability theory: Bayes
theorem. Suppose there are multiple independent, exclusive outcomes
of an experiment, {Ai}. B is anything else we know (a single outcome,
a condition involving multiple outcomes, ... ). A true statement is that
P (Ai and B) = P (Ai|B)P (B) = P (B|Ai)P (Ai). Bayes theorem is
these last two equalities, re-written as:

P (Ai|B) = P (B|Ai)P (Ai)
P (B)

This theorem can be counterintuitive but is very useful. Examples are
found in G&T section 3.4.2 and B&B section 15.6.

• It is worth repeating from last week, that here are the methods of stat
mech:

– Specify macrostates and the microstates that contribute to each
macrostate.

– Choose the ensemble. This is a collection of identically-prepared
systems, like the different trials from probability theory. For ex-
ample, if energy is the same for all members, this is called the
microcanonical ensemble

– Calculate statistical properties.

http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf
http://math.harvard.edu/~ctm/home/text/others/shannon/entropy/entropy.pdf


• B&B Ch. 4 begins with a review of the 0th law of thermo: Thermal
equilibrium and thermometers exist. It also reviews macro and micro
states with coin-counting examples.

• B&B Ch. 4 then synthesizes a great new idea from material in earlier
weeks. Consider two systems in thermal contact as below. Earlier,
when we were purely doing thermo, we made an ad hoc definition of
temperature as the thing that is equal when S = S1 +S2 is maximized:

dS = 0 =>
1

T1

=
∂S1

∂E1

=
∂S2

∂E2

=
1

T2

Now, informed by stat mech, we can do better. We use definition that

Si = k lnΩi. Thus S = S1 + S2 is maximized when Ω = Ω1Ω2 is
maximized. This happens for the Ω which is largest ... it embraces
the most microstates for the combined system. This is equilibrium! So
finally, the new idea this week - this statistical definition of temperature
for any system i with energy Ei:

1

kTi
=
∂ln Ωi(Ei)

∂Ei

• This “statistical basis for entropy” is also discussed in B&B section
14.5. The bottom line is that

1

T
=
d (k lnΩ)

dE
=
∂S

∂E

• G&T section 4.2 is about the Einstein solid. Two Einstein solids, A
and B, with fixed numbers of energy-storing particles, NA and NB, are
brought into thermal contact. This example is a concrete illustration
of the idea of B&B section 4.4. Namely, equilibrium corresponds to a
maximum in the entropy S(EA, E −EA, NA, NB) for given E, NA and
NB.



• We can further explore (via theory and simulation) fluctuations around
the equilibrium value ĒA. There are two things that might be large in
an Einstein solid: the total energy E and the number of oscillators, N .
One or both of these needs to be large in order for us to claim that stat
mech works for this system.

• G&T then goes on about counting states ... but we postpone that
and now mention ensembles, as introduced in B&B 4.5 and 4.6. The
Canonical ensemble is one where the system we care about is tiny,
compared to the huge other system. They can exchange thermal energy
(but not particles). E is conserved for the combination of the two, and
we ask about the energy of the tiny system. The huge system hogs
the energy because it can use energy to create more microstates than
can the tiny system. For example, suppose they were set up each
with half the total energy. They would be out of equilibrium since:
Ω1(E/2−∆E)Ω2(E/2 + ∆E) > Ω1(E/2)Ω2(E/2) .

• What is the Canonical ensemble? It is an ensemble (group) of systems
that are reflective of equilibrium. The probability P (Es) that any sys-
tem has energy Es is correct, given its temperature T equals that of
the bath. G&T section 4.6, and B&B section 4.6 make the same ar-
gument (different notations unfortunately :-( The probability that the
tiny system holds energy Es is:

P (Es) ∝ e−Es/kT =
1

Z
e−Es/kT

where 1
kT

= dlnΩb
dE

... the statistical definition of temperature. The heat
bath maintains the small system and itself at a fairly steady tempera-
ture T by virtue of its hugeness. At the end of Section 4.6, B&B bring
up the example of two Einstein solids, one huge (bath) and one tiny
(system), as an example of canonical statistics.



• A notation everyone uses is β = 1
kT

.

• In the expression P (Es) ∝ e−Es/kT = 1
Z
e−Es/kT the quantity Z is

called the Canonical partition function. It shows up innocently as a
normalization. But really, as we will emphasize next week, it is the key
to all of equilibrium stat mech, for a system of constant N and V in
contact with a bath at temperature T .

• Last week, we read that the method of Lagrange’s undetermined mul-
tipliers is a clever way to maximize a function subject to a constraints
like normalization, and it works for multiple constraints. Last week
we had a problem about a loaded die, where the mean value of the
die, n̄ was a second constraint. In Example 14.7 of B&B (p. 152), a
very similar second constraint is applied: the mean of the energy is
known. This leads us back to Canonical statistics. Another name for
the canonical probability distribution is the Boltzmann distribution of
states: Pj ∝ e−βEJ .

• The Boltzmann distribution can be applied, as in G&T section 6.2.2
and 6.2.3 to gas velocities. In that case, it is often known as the
Maxwell-Boltzmann (MB) distribution and the speed distribution p ∝
v2e−mv

2/2kT is called a Maxwellian.)

• Ch. 5 of B&B is a short, excellent reference for the MB distribution of
velocities.

• We can also apply the Boltzmann distribution to derive the beautiful
equipartition theorem. This is done in G&T section 6.2.1 and B&B Ch.
19. This presumes particles are classical; it breaks down for low enough
temperatures. On the other hand, if kT >> ∆Eq, where ∆Eq is a
typical separation between quantum levels, then equipartition applies.
In this case, every squared “degree of freedom” in the Hamiltonian gets
1
2
kT of energy.

• Please be sure that you can use equipartition to find how much energy,
on average, is contained in

– a single harmonic oscillator

– a solid with N atoms (modeled as harmonic oscillators :-)

– a mole of monatomic gas

– a mole of diatomic gas

• A system like two same-size boxes of gas, isolated from the world, would
be a member of the microcanonical ensemble. On the other hand, a
tiny box within a big bath would be a member of the canonical ensem-
ble. In any ensemble, one wants to know the partition function. Table



4.9 of G&T is a good summary. We see the natural variables written
in Ω(E, V,N) and Z(T, V,N) respectively; these are the microcanon-
ical and canonical partition functions. ( Math note: It’s a Legendre
transform taking us from E to T .)

• G&T section 4.5 shows us that we can talk about two systems using the
micro canonical ensemble, and do the counting to find the way energy
divides between them in equilibrium. This leads us to this S(E, V,N)
for a monatomic ideal gas:

S(E, V,N) = Nk[ln
V

N
+

3

2
ln

mE

3Nπh̄2 +
5

2
]

Now we aren’t limited to merely knowing ∆S between two states ... we
have an absolute entropy. Some good things we can do with it:

– Take partial derivatives w.r.t. E, V and N to find T , P and µ. ’

– Derive PV = NkT

– Derive E = 3
2
NkT

– Swap T for E to get another expression for entropy: S(T, V,N)
which is called Sackur-Tetrode

– Use S(T, V,N) to confirm the third law of thermodynamics

• Things that you can get from the Canonical partition function (a partial
list ... we will get more next week):

– The expectation value of the energy: Ē = −∂ lnZ/∂T
– The expected size of mean squared fluctuations in the energy:

< E2 − Ē2 >= kT 2CV

This is pretty interesting. First off, it’s an example of a “fluctuation-
dissipation” theorem; these occur in other places in physics. Also,
it’s a way to find heat capacity, without adding any heat to a sys-
tem! Just measure the natural fluctuations ... the larger they are,
the bigger the heat capacity!



• Let’s write some definitions for Z because they capture subtle things
that are easy to get wrong:

– If we use a label α to signify a microstate, then

Z = ΣαE
−βEα (1)

– If a macrostate whose energy is EJ has got multiple microstates ,
we need to count them ... to find the degeneracy gJ . Then we can
write:

Z = ΣJ gJE
−βEJ (2)

Please note that Eqs. (1) and (2) are calculating the same thing
in two different ways.

– Sometimes energy is a continuous variable. Even if discrete, some-
times energy states are so closely spaced that there is a huge
number in any interval ∆E we could measure. An example is
the semiclassical ideal gas. In this case, the degeneracy is called
the density of states g(E). This is much like last week when we
had probabilities, p(xi) for discrete variables xi, and probability
densities p(x) for continuous variables. In the continuous case:

Z =
∫
g(E)e−βEdE

– In order to count states for the quantum particle-in-a-box (ideal
gas atom) we often go through the stage of counting the allowed
wave numbers, k, that fit in the box of length L in 1d (or area L2

in 2d or volume L3 in 3d). The way to translate between these
two representations of states is:

h̄2k2/2m = E thus h̄2k/m dk = dE . Also g(E)dE = g(k)dk

– Formulae are derived in your book, and the gist of our counting
is shown in this picture:



– Other aids to counting are to calculate not g(E)dE, which is like
a probability distribution function, but Γ(E), is like a cumulative

distribution function: Γ(E) =
∫ E

0 g(E)dE. Thus, dΓ(E)
dE

= g(E)
This is not just a counting aid ... typically Γ(E) is so huge that taking lnΓ

is equivalent to taking lnΩ, but this is minutia.

• Z(T,V,N) is the partition function for N particles, but we read a lot
about the single particle partition function. Why care about one par-
ticle? Because if we have N distinguishable particles, it is the case
that

Z(T, V,N) = Z(T, V, 1)N distinguishable particles

• In a related way, if we have two completely different degrees of freedom
(like A = rotations and B = translations) then partition functions just
multiply

Z = ZA ZB

• What about N indistinguishable particles?

– The right way: Find out if they are bosons and fermions and do
the correct counting arguments

– The not-totally-right way: This works for classical ideal gasses,
and in fact it is essential to get the entropy of mixing correct:

Z(T, V,N) =
1

N !
Z(T, V, 1)N dilute, semiclassical particles

This approach is predicated on the idea that there are so many
states, and so few particles (N is few? Well ... N is few compared
to the number of available quantum states.) that it would be
extremely unlikely to find any two particles occupying the same
quantum state.



• For semiclassical particles (now we are being more general than just
talking about ideal gasses) G&T Section 6.2 tells us that we can cut
through all the “particle in a box” counting. There is one quantum
state per “box” of size dxdp/h. To find Z amounts to taking an integral
over x1, y1, z1, x2....px,1, py,1... . We integrate over the 3N coordinates
of N particles in 3D. Thus

ZN,classical =
1

h3N N !

∫
e−βE(x1,y1,....,py,N ,pz,N )dx1,....,pz,N

• How do we know a gas can be treated semi classically? For this, we
calculate the thermal deBroglie wavelength, λ̄. If this is much smaller
than the mean distance between particles, the semiclassical limit is
good.

• G&T section 3.4.1 (last week’s reading) said that uncertainty in a sys-
tem with probabilities {Pi} can be characterized by a function
S({Pi}) = −ΣiPiln(Pi). In the special case that Pi = 1/Ω for all i, one
has S = lnΩ. This week, we read in B&B 14.8 that inserting a k to get
units right, this is the Gibbs expression for entropy: S = −kΣiPiln(Pi).

• In the context of information theory, S =< Q >= −kΣiPiln(Pi), where
Q is the information content of a statement. In B&B section 15.1, this
is called the Shannon entropy. We have some recommended readings
as well as B&B Ch. 15 which talk expand on how entropy relates to
encoding information, as applied data compression, quantum informa-
tion, and more.

• Entropy of mixing hearkens back to the red and white beans I showed
in Week 1. B&B Ch. 14 shows that two distinguishable gasses, totaling
N molecules and initially occupying volumes xV and (1 − x)V , when
mixed in volume V , experience this change in entropy:

∆S = −Nk [x lnx + (1− x) ln(1− x)]

G&T section 6.1 shows us how it is the case that identical particles
have ∆S = 0, as it should be :-)

• Maxwell’s demon can’t exist. If he/she could, the 2nd law of thermo
would crumble. We also read that even a cyber-demon can’t do the
job of reversing an irreversible process. It would increase the entropy
of the universe whenever it destroyed information, e.g. to erase files on
its hard drive. Entropy and information are deeply intertwined in our
universe!



Presentation: Entropy
Tell us about different definitions entropy we encounter in the reading (sta-
tistical, thermodynamic, Gibbs, Shannon, ... ) Are they all talking about the
same quantity? xkcd thinks not ... see https://xkcd.com/1862/ . Once you
have covered the basics, if you would like to branch out (say talk about data
compression? See some references I’ve put on our Moodle site ... ) go ahead.
Just please be mindful of our very limited time this year ... 15 minutes is a
good length for a presentation!

Warmup Problems: Due Monday ideally ... Tuesday OK

1: Demon thermometer and ideal gas: G&T problem 1.8 parts
(a), (b), (c), (d), and (g)

2: Statistical definition of entropy
B&B Problem 14.8

Regular problems:

1: Counting states for gas particles in a box

i) G&T Problem 4.11
ii) G&T Problem 4.14

2: Einstein solids in thermal contact G&T Problem 4.7

3: An isolated Einstein solid: G&T Problem 4.22

4: Relative abundance of isomers: G&T Problem 4.24

5: Maximizing the Shannon entropy B&B Problem 15.3

6: Semiclassical limit of ideal gasses
i) G&T Problem 6.2
ii) What is the thermal deBroglie wavelength, λ̄, for nitrogen N2 gas at room
temperature? At what density, ρ would room temperature nitrogen need to
be treated with quantum mechanics? At this temperature and atmospheric
pressure, is nitrogen a solid, liquid or gas?

7: Entropy of mixing G&T Problem 6.9

h


8: Equipartition
i) B&B Problem 19.5
ii) G&T Problem 6.47

9: Maxwell-Boltzman velocity distribution
G&T Problem 6.11

10: Maxwellian speed distribution
G&T Problem 6.12

Optional: Bayesian Statistics
i) G&T Problem 3.25
ii) See example 15.6 in B&B and also at the“Let’s make a deal” (Monte
Hall) problem of example 3.15 in G&T. Can we challenge ourselves to do
these problems two ways? First, the more simpleminded way of considering
how the sample space changes as we receive prior info. Second, using the
formalism of Bayesian statistics?


