Physics 114 Statistical Mechanics Spring 2018

Seminar 4

Overview:

This week we study the fundamentals of probability theory. We go over the
definition of a probability distribution, both for discrete and continuous ran-
dom variables. We practice counting states for systems of interest, so that
we can derive probability distributions - like the ubiquitous binomial distri-
bution. We learn to calculate the moments of a probability distribution, with
especial emphasis on the first two: the mean and variance. For discrete dis-
tributions involving a large number N, we will find it useful to use Stirling’s
approzimation. We (finally!) encounter a definition of entropy based on the
probability of observing a macrostate. Section 3.4.1 of G&T talks about en-
tropy in terms of uncertainty. A recommended reading by Pratt talks about
ignorance. With these in mind, we are meant to believe that S(2) o Inf2
is an excellent definition of how uncertain/ignorant we are about the results
of a measurement, if all measurement results, €2, are equally probable. The
more general case, if a measurement result has a probability of P;, would be
S=—k P, InP; .

(Next week, we will continue to think about in entropy in a statistical way. Sec-
tion 14.8 of B&B will call S = —k P; InP; the Gibbs entropy of a thermodynamic
system. B&B Ch. 15 defines the Shannon entropy, which applies beyond thermo-
dynamics, to fields like cryptography, data compression and quantum mechanics.)

Required Reading:
G&T Sections

e Ch. 3
We will return to Bayes theorem next week, so you can omit section
3.2.4 on Bayesian inference. You can also omit section 3.11.2, a proof
of the Central Limit Theorem.

e Section 4.1
B&B sections
e Section 1.4
e Ch. 3
e Appendices C.1, C.2, C.3 and C. 13



Recommended Reading:

e There is a short reading on “ignorance” and Lagrange’s undetermined
multipliers “Electronic readings and Resources” area of our Moodle
site.

e (Calculating Lagrange’s undetermined multipliers: a Wolfram Widget:
http://www.wolframalpha.com/widgets/view. jsp?id=1451afdfe5a25b2a316377c1cd488883
There is also this demo, a Wolfram Demonstrations Project:

http://demonstrations.wolfram.com/LagrangeMultipliersInTwoDimensions/

Concept checklist from Readings:

e Prof. Park of Williams College told us “Probabilty doesn’t tell you
whether you will win, but it tells you how to play the game.” It also
tells us how gas molecules, electrons, photons, ... play their games.

e We imagine a space of ezclusive outcomes of experiments {z;}, called
the sample space. The function P(x;) represents the likelihood of seeing
result x; upon one trial of the experiment. If we do many trials, the
number of times outcome z; occurs is proportional to P(x;).

e P(x;) is for outcomes with discrete results, like numbers show on a pair
of dice. If experiments have continuously distributed outcomes, like the
location x of a particle, we adopt the notation p(x). Now zx is a real
number and p(z) is the probability density. The likelihood of seeing any
outcome z is zero! However, p(z)dz is the probability of seeing z fall
somewhere within x and x 4 dz. It is nonzero, in general, for finite dx.

e Some rules for probability are P(z;) > 0 and 3;P(x;) = 1 ... proba-
bilities are positive and normalized. Normalization for p(x) would be
[p(x)dx = 1.

e The addition rule of probability applies when we do an experiment with
an exclusive outcome, but ask a less-exclusive question. For example,
we can ask about the likelihood of an outcome being x; OR z; when
the experiment is done once. The answer is:

e Another rule has to do with doing more than one trial, or doing tri-
als of two different kinds of experiments as in B&B section 3.6 which
talks about “independent random variables”. The most basic ques-
tion is: What is the likelihood of seeing x; AND x; as results of
two trials. If trials are independent, the multiplication rule applies:
Prob(z; AND x;) = P(z;)P(x;).


http://www.wolframalpha.com/widgets/view.jsp?id=1451afdfe5a25b2a316377c1cd488883
http://demonstrations.wolfram.com/LagrangeMultipliersInTwoDimensions/

e Conditional probabilities are needed where experimental outcomes are
not independent, as they relate to the question we ask. For example,
suppose we toss two dice, look at the first but not the second, and
ask about the sum of the values shown. The first die has value x.,,.
Call this outcome Event B. We could ask for the probability that the
total value shown on both die, Tseen + Tunseen, is greater than 7. Call
this outcome Event A. What is Prob(A occurs, given that B occurs)?
This is written P(A|B). In general, P(A|B) # P(A). This is because
the information we received from Event B is meaningful. For example,
it is more likely for the total to exceed 7 if Event B was x ., = 6, as
opposed the e, = 2.

e The completeness of our sample space implies

— P(A) = P(A|B) + P(A| 4 B)

where 4 B is the situation where outcome B does not occur.

— P(A AND B) = P(A|B)P(B) = P(B|A)P(A)

e The mean or average of a probability distribution is an important con-
cept: T = X;x; P(x;). For continuous distributions, it is 7 = [ zp(x)dx.

e A related idea, is the expected value of a function, f(z). If outcome x
has a probability density p(z), then

f =1 f(@)p(x)dz.

e The moments of a probability distribution are p; = 2. The first mo-
ment, pq is the mean. Often, people calculate “central moments” in-
stead: Ap; = (z —z)7. The first central moment is thus zero. The
second central moment, Ay is also known as the variance:

0? = (r — )2 Tts square root is, for many distributions we will en-
counter, a measure of the “width” of the distribution, in that most

outcomes fall within ¢ of the mean, z.

e Having more than one independent random variable, finding mean or
variance of a product or sum, is treated in B&B sections 3.5 and 3.6.

e A Bernoulli process concerns an object which can have only two states,
for example, a coin showing heads or tails, but N independent objects
are considered ... either by repeating the experiment with one object N
times, or by examining N objects all at once. An important parameter
of the distribution is p, the probability of the first outcome (heads, say)
Thus ¢ = 1 — p is the probability of tails. A “fair” coin has p = ¢. The
distribution Py (n) with n the number of heads among N tosses is the
Binomial distribution.

N1 .
Py(n) = g™

n!(N —n)



Please know how to calculate its mean, Np, and variance, Npq, and
note that the entries of Pascal’s triangle correspond to the values
PN (n)

Here is a graph of Py(n) from the G&T Binomial applet for N = 10, 20
and 60. If you look at the page from which the applet loads,

P(n) versus nf<n>

File Edit Display Tools Views Help-I

020} = =
n
0.15 il
o [ ] L] L] [ ]
0.10F o
L BN |
m "B g
0.05% .-
] L L ]
n . . n
LI N R . P
0 0.5 1.0 1= 2.0
nf<nz=

http://stp.clarku.edu/simulations/binomial /index.html, you will see that for
N > 20, they use Stirling’s approzimation for N! :

1
InN!~ NinN — N + iln(27rN)

We often need N! for very large N values, so please get comfortable
with Stirling’s approximation, derived in Appendix C.3 of B&B.

Another Bernoulli process is the random walk. Random walks in space
(shape of polymers) and time (paths of photons in the stellar interior)
show up a lot in physics!

_______


h

e Mathematical functions and integrals everyone should know:

— The factorial integral (in Appendix C1 of B&B)
— The gaussian integrals (in Appendix C.2 of B&B)

— The combination (or binomial coefficient)
— n — n!
C(n,r) = ( r > = n=r) 7!

e Trials of an experiment yield samples for a histogram. You can estimate
the moments of the true, underlying probability distribution from the
histogram. The law of large numbers says that the more trials you do,
the closer the mean, variance, ... will come to the one predicted by the
true distribution.

e Suppose you find the sum of the results of a set of trials: S = XNVs;.
Even if p(s;) is not a Gaussian distribution, p(S) approaches a Gaussian
as you sum an arbitrarily large number, N, of results. This is the
Central Limit Theorem.

p(8) = ¢21*
TG

e How can we quantify ignorance? G&'T section 3.4.1 says that uncer-
tainty in a system with probabilities {P;} can be characterized by a
function S({P;}). In order for uncertainties for subsystems to be addi-
tive, S = —3; P,In(P;). In the special case that P, = 1/ for all i, one
has S = Inf).

exp[—(S — S)*/202] ; S=Ns5; oz=No*

e Normalization is a constraint on the function p(x). The method of La-
grange’s undetermined multipliers is a clever way to maximize a func-
tion subject to a constraint like this. (It also works for multiple con-
straints ... we’ll exploit this next week.)

e The normalization constraint on p(z) is a simple idea with huge phys-
ical consequences. S subject to this constraint implies that all states



are equally probable. This is discussed in the Pratt reading. (Next
week, a second constraint is applied: the mean of the energy is known. This
will lead us to the Boltzmann distribution of states: Pj oc e #F7.)

G&T Ch. 4.1 begins to outlines the methods of stat mech:

— Specify macrostates and the microstates that contribute to each
macrostate.

— Choose the ensemble. This is a collection of identically-prepared
systems, like the different trials from probability theory. For ex-
ample, if energy is the same for all members, this is called the
microcanonical ensemble

— Calculate statistical properties.

Section 4.1 of G&T has a classic example: distinguishable particles
with two spin states (identical statistics to the atoms of Section 1.4
in B&B). (Next week we’ll read Section 4.2 and consider another classic
example: the Einstein solid.)



Warmup Problem: Due before seminar, Monday eve or, more realis-
tically, mid-day on Tuesday

1: Independent spins G&T Problem 4.1

Presentation: Monte Carlo Integration You may base this
presentation on G&T Problem 3.60 if you wish. Please explain the concept
of doing integration by Monte Carlo. Show us the solution to this problem.
Use their software if you wish, or write your own. If you happen to know
about “importance sampling” or would like a reference from me, to make
your integral that much more efficient, just ask :-)

Regular problems:

1: I heart Random numbers ... a numerical problem

This is a problem asking you to do some amount of numerical computation.
Using whatever computing environment you feel good about ...

a) Generate a set of 200 random numbers {z; } ,where ¢ = 1, ..., 200. These
numbers should be uniformly distributed between 0 and 1. Please give the
lines of code you used to generate these, as your answer to this problem.

b) For a uniform distribution of random numbers, p(x)dx = dz. In other
words, p(xz) = 1 for all z. Plot a histogram of these numbers, to see if indeed
all numbers seem equally likely.

c¢) Find the mean and variance of your numbers, Z and o?. Comment
on whether they are close to what’d you expect from a uniform probability
distribution between 0 and 1.

d) Calculate a new random number X which is the sum of all 200 numbers:
X = ¥2%4;. Do this lots of times, until you have a set of 500 numbers {X;}
where 5 = 1,500. Plot a histogram of these numbers. How close is your
histogram to the shape of a Gaussian? Does the probability distribution
of these numbers, p(X), have a mean and variance that is close to what is
predicted by the central limit theorem?

2: Random walks and the binomial distribution G&T Problem 3.35

3: Basic probability:

i) What are the rules? G&T Problem 3.7

Note: The person introducing this problem could do i) ...

ii) Likelihood of various outcomes? G&T Problem 3.18
Note: i) assumes gender is binary :-{



iii) Expectation values: B&B Problem 3.5 parts (a), (c¢), and (e)

4: How big is that pond, and how many fish are in it?
i) G&T Problem 3.58
ii) G&T Problem 3.59

5: Monte Carlo Integration G&T Problem 3.60

6: Poisson distribution B&B Problem 3.3

7: Binomial distribution for magnets and gasses
i) G&T Problem 3.27
ii) G&T Problem 3.34

8: Lagrange’s undetermined multipliers G&T Problem 3.51

9: Stirling’s approximation G&T Problem 3.33



