
Physics 114 Statistical Mechanics Spring 2018

Seminar 2

Overview:
This week, the new idea is entropy, S, a function which fully characterizes
an equilibrium state. (So does the energy E; they have equivalent information

content.) The partial derivatives of S define functions of state. Postulates
about S (stated carefully in the Callen reading) give mathematical rigor
to thermodynamics. The second and third laws of thermo are both about
entropy: that S must increase in any real process, and at zero temperature,
S = 0.

Also equal to zero at T = 0 are the partial derivatives of S with respect to
functions of state. This makes it impossible to bring a thermodynamic system
to T = 0 in any real process. Recently, a temperatures of only 0.006K was
reached for a chunk of solid copper, and gas atoms have been cooled to within
a billionth of a degree above T = 0. But T = 0 is not obtainable. (Or is it?
See https://www.quantum-munich.de/research/negative-absolute-temperature/.)
Practical consequences of the second and third laws are that we can envi-
sion heat engines which turn some heat into work, and refrigerators which
work to pump heat against the “natural” thermodynamic direction. Both of
these can be made optimally efficient, which means that input heat or work
are used with as little waste as possible. However, it is impossible for any
machine to convert heat entirely into work, without some heat being shed to
increase the entropy of the universe.

Required Reading:
G&T Sections

• 2.12 - 2.20, 2.23.1 and 2.24.1

B&B sections

• Chapter 13,

• 14.1-14.4

• Chapter 18



Recommended Reading:

• Callen’s Chapters 1 & 2 are linked to our Moodle site. Recommended
for this week are sections 1.9 - 2.7. (Ch. 1 up to 1.9 is a good elaboration
on last week’s reading.)

• Callen’s Appendix A is a summary of the kinds of partial derivative
relations we need to use, and a compliment to G&T 2.241 (also B&B
A.6 from last week).

Concept checklist from Readings:

• Notation alert: I will interchangeably use E and U below, since our
readings differ in which they use. That’s life.

• Last week, we read about problems in “calorimetry”, which envision
heat flowing between two systems at different starting temperatures,
with different heat capacities CA(T ) and CB(T ). Conservation of en-
ergy implied QA + QB = 0; and using Q =

∫
C(T )dT allowed us to

calculate Tf , the final temperature of A and B. This week, we learn
that the change in entropy for a system is dS = dQ/T for an infinitesi-
mal, reversible way of adding heat dQ. Putting two systems in thermal
contact fits this definition. Thus, ∆S =

∫ f
i C(T )/T dT can be applied

separately to systems A and B, leading to ∆Stotal = ∆SA+∆SB. If the
thermal energy flows from warmer to colder object, then ∆Stotal > 0,
a manifestation of the second law of thermodynamics.

• G&T Section 22.4.1 and Appendix A of Callen (as well as last week’s
C.6 of B&B) are reminders of the kinds of partial derivative identities
we will need in thermo. Some are not intuitive (e.g. the minus sign
that shows up in G&T 2.238 and B&B Eq. C.42) but all are derivable
beginning with basic ideas of taking partial derivatives of a multivariate
function, and the chain rule of calculus.

• The terms isentropic process, reversible process, quasistatic process,
have the potential to be confusing, so do your best to think carefully
about them. For example, all reversible, isentropic processes are adi-
abatic. But not all adiabatic processes are isentropic; for example, a
free expansion into a vaccuum. (This process is not reversible!)

• Another source of confusion is that sometimes when books make argu-
ments about S they are talking about the system, and sometimes about
the system+surroundings. Yikes! For the system+surroundings, it is
always the case that ∆Ssystem+surroundings ≥ 0. For just a system, it is
always the case that TdSsystem ≥ dQsystem where equality means the
process is reversible.



• The first law is about conservation of energy: Nonconservative pro-
cesses are impossible. The second law further restricts processes. Here
it is in pictures:
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• The thermodynamic temperature is found by thinking of entropy as a
function: S(E, V,N). Then

1

T
≡
(
∂S

∂E

)
V,N

This T is equivalent to the ideal gas temperature θ, as is argued in
G&T section 2.16.



• A little more about S(E, V,N) ... inspired by Callen and B&B, so I’ll
switch to using U for energy ...

– The natural variables for S are actually U, V,N1, N2, ... where we
are being very general to subscript N ... in case we have different
kinds of molecules , ... if we are doing chemistry for example.

– These natural variables for entropy are extensive, as is S itself.

– For simplicity, consider a system with just two parts, A and B.
Then SA+SB = S for composite system. In other words, entropies
are additive.

– In equilibrium, extensive parameters evolve to where
S(UA, UB, VA, VB, N1A, ....) is maximized - subject to any constraints.
E.g. if a wall is “adiabatic”, energy can’t cross. If it is “conduc-
tive” (also called “diathermy”) it can; so UA and UB can reparti-
tion themselves, as long as their sum remains a constant.

– S(U, V,N) is monotonically increasing with U . This is key, b/c it
means that we can invert S(U, V,N) to write U(S, V,N). You can
consider entropy as the starting point of your argument, your most
important thermodynamic potential, or you can consider energy to
be the important one. (We will meet other thermodynamic potentials next

week, and see how to mathematically convert one to the other. )

– It follows that S(λU, λV, λN1, ...) = λS(U, V,N1, ...). So S is a
homogeneous, first order function of the extensive parameters of
the system.

– Entropy vanishes∗ so S = 0 for the zero temperature state ... i.e.
when (∂U/∂S) = 0.

* Well ... S doesn’t strictly have to vanish. It can go to some small nonzero

constant if the lowest energy state state of the system is “degenerate” and there

are a couple of configurations that have the same energy.

• The intensive parameters are partial derivatives of the entropy with re-
spect to the extensive parameters. Please review the argument around,
and perhaps even sketch a picture of, sides A and B of a box sepa-
rated by a diathermal wall. Maximizing entropy means (∂SA/∂UA) =
(∂SB/∂UB) and this allows us to make the important leap to defining:

1/T ≡ (∂S/∂U)V,N

As mentioned above, this is our thermodynamic definition of tempera-
ture. It lets us make an argument (as in G&T section 2.13) that if the
two systems evolve and entropy changes, since ∆S > 0 it must be that
the hotter system always loses energy to the colder.



• A similar argument with a wall that can move to give more/less volume
to A or B gives us pressure:

P/T ≡ (∂S/∂V )U,N

• Ditto with particle numbers. This defines a new quantity that will be
important in later weeks, chemical potential:

µ/T ≡ −(∂S/∂N)U,V

• If we take the view that that U(S,V,N) is our fundamental thermody-
namic potential, we arrive at a similar set of partial derivatives. Be
aware of new placements of minus signs. Eg. P/T ≡ −(∂U/∂V )S,N .

• G&T section 2.18 is a great summary of what we should know about
entropy, S(E, V,N). The partial derivatives for intensive properties
defined above lead us to

dS = dE/T+P/TdV−µ/TdN Change in Entropy in quasistatic process

• If we take the view that E(S,V,N) is our fundamental thermodynamic
potential, we arrive at

dE = TdS−PdV +µdN the Fundamental Thermodynamic Relation

• What is an “equation of state”? Is it S = S(E, V,N) or equivalently,
E = E(S, V,N)? No. Admittedly, this is all just terminology. But
an “equation of state” carries less information. Callen tells us that
the relationship between one intensive and three (or more) extensive
variables is an “equation of state”. For example, T = (∂S/∂E)V,N is
a function S, V,N . There are three different functional relationships,
each of which we’d call an equation of state:

T = T (S, V,N) ; P = P (S, V,N) ; µ = µ(S, V,N)

If we know all of these, then we have as much information as is con-
tained by the original function, S(E, V,N).

• Equations of state are homogeneous zero order ... rescaling each exten-
sive parameter by a factor, λ, leaves the equation of state unchanged.
This is cool because it means we can take λ = N and write our equa-
tion of state in “reduced variables” like s = S/N and v = V/N . In a
problem this week, you are asked to write the van der Waals equation
of state in the form P = f(T, ρ).



• We can put together the fundamental thermodynamic relation and the
ideal gas energy equation and equation of state to find the entropy
change for a monatomic ideal gas:

∆S =
3

2
Nk ln

T2
T1

+Nk ln
V2
V1

• We have talked about the free expansion of a gas ... so simple yet
so rich that it has a name: Joule Expansion. Please understand this
case, that it is one where gas entropy increases, pressure decreases,
but no energy enters or leaves, and the universe as a whole gains
entropy (unlike the case of a reversible isothermal expansion, where
∆Ssystem = −∆Ssurroundings.). Joule expansion is an adiabatic, non-
isentropic, irreversible process :-p (There will be more details about
the Joule expansion next week, in a reading from B&B Ch. 27.1.)

• Engines, refrigerators and heat pumps are discussed in G&T reading
section 2.14 and B&B Ch. 13 There are new notations now ... one is
that W is the work done by the engine. In other words, W in the sec-
tions of G&T about engines is −W of earlier sections. Aargh. We also
read about Qh or Qhot for heat taken from a hot place, and Ql or Qcold

sent to the cold place. All of these numbers should be interpreted as
positive. They are the sum of all heats entering or leaving the working
substance. For example: On Fig. 2.4 of G&T, there are two legs on
which heat comes in (Qhot) , and two on which heat leaves (Qcold) the
working substance. Be sure you can use the first law to identify which
ones.

• So for example, it is true in this section to write:

Wout = Qhot −Qcold the first law

Question: What is ∆E on this cycle? Answer: Because engines operate
in cycles, it is zero.

• There can be reversible engines (or reversible cycles). B&B section 13.7
has a good discussion where all cycles are claimed to obey Clausius’
theorem:

∮
ąQ/T ≤ 0. Please know that a cycle like Fig. 2.4 on G&T

is not reversible, but the cycle of Fig. 2.9 is. This is subtle ... reversible
engines do not increase the entropy of the system+surroundings. Need-
less to say, they are an impossible idealization :-)

• Know the details of the Fig. 2.9 engine, which is the Carnot Engine.
It is reversible. Its efficiency is the highest possible working between
two given temperatures.

• Every engine has an efficiency of what you get / what you pay for=
η = 1 − Qcold/Qhot. Acting between two extreme temperatures Thot
and Tcold, a reversible engine has an efficiency of η = 1 − Tcold/Thot.



• There is a COP for a heat pump or refrigerator. Like engines, it is (what
you get / what you pay for) But in these cases, what you get is different;
heat. What you pay for is work. Thus for a fridge, COP = Qcold/W .
(The symbol W has now come back to referring to the work put into
the system.) For a heat pump, a way of keeping warm by working
to reversing the natural direction of heat flow, you’d want to define
COP = Qhot/W .

• The third law of thermodynamics states that the T = 0 state of a
system is unique. Often you will read that S(T = 0) = 0. But really,
the important thing is that S(T = 0) it is a unique value, independent
of pressure, chemical potential, ... any other thermodynamic function
you could vary. Here is a picture from wikipedia where X plays the role
of this other parameter.

• In summary, G&T quotes Einstein saying:
A theory is the more impressive the greater the simplicity of its premises,
the more different kinds of things it relates, and the more extended its
area of applicability. Therefore ... classical thermodynamics ...is the
only physical theory of universal content which I am convinced will
never be overthrown, within the framework of applicability of its basic
concepts.
Here are some postulates and theorems which Einstein probably knew,
and you should probably know also :-)

– The Clausius statement of the second law

– The Kelvin statement of the second law

– The Nernst statement of the third law

– Carnot’s theorem

– Callen’s entropy Postulate II

– Callen’s entropy Postulate III

– The maximum work theorem (see Callen Ch. 4)



Warmup Problems: Due before seminar, Monday at 5 pm

1. entropy of an ideal gas G&T 2.24

2. heat pump: possible or impossible? B&B 13.1

Held-over-from-last-week problems

We may not have done problems 10 and 11 last week (depending on what
section you are in). We want to do them ... Amy can field them in the
sections where they were not done.

Regular problems

Which problem is yours to present? Which is yours to introduce? Section
Wed A is deciding this themselves - and I’ll create a document for Wed B
and Thurs, which you all are free to alter in any way you see fit! We just
want coverage on all problems.
1: Ideal refrigerator G&T problem 2.19

2: partial derivatives
a) G&T Problem 2.31

b) Using the definition of z(x, y) in part a), find
(
∂z
∂x

)
u

where u(x, y) = xy.

3: Establishing equilibrium
a) Callen 2.6-3
b) Callen 2.7-2

4: An equation of state Write the van der Waals equations of state in the
form P = f(T, ρ) (Hey, wasn’t this a warmup last week? Yes :-) and thus
show that this is an equation which is homogeneous and zero order in the
extensive state variables.

5: Free expansion of a non-ideal gas G&T Problem 2.29

6: Realistic refrigerator B&B Problem 13.6

7: What’s the change in entropy for the system?
How about the change in entropy for the system+surroundings?
Hint: Reference data can be found on the Web and pp. 404-405 of Schroder’s book.



a) when solid copper is slowly cooled from 42oC to 20oC by a mechanism of
your choice
b) when 100 g of ice at 0oC melts into 100 g of water at 0oC by a mechanism
of your choice
c) when a magician goes “poof” and turns the crystal kyanite into a different
crystal, andalusite; taking place at T = 298K and atmospheric pressure.
d) when one mole of ideal gas at 0oC does an isothermal expansion to twice
its original volume.
e) when one mole of ideal gas at 0oC does an adiabatic expansion (i.e. Q = 0,
but happens quasi statically) to twice its original volume.
f) when one mole of ideal gas at 0oC undergoes a free expansion (i.e. Q = 0,
but happens quickly, and irreversibly) , also known as a “Joule expansion”,
to twice its original volume.

8: exact differentials
a) Given df = F (P, V )dP + G(P, V )dV where F = PV and G = P 2, is df
an exact differential?
b) Whether your answer to a) is yes or no, please find∫ 1,1

0,0
df

on the two paths, A (dashed) and B (dotted) shown below.

9: I think I just broke thermodynamics A scientist thinks they have
found a system for which S = NR ln(cUV

N2 ) where c is a constant. This
violates the 3rd law. Why?

10: Positive change of entropy G&T Problem 2.61



11: The Otto cycle B&B problem 13.5. Is an Otto engine really less
efficient than a Carnot engine? How so?

12: Removing a constraint Callen 1.10-3

13: Finding equations of state Callen 2.2-1
Note: θ and vo are just constants.


