




Physics 112: Classical Electromagnetism, Fall 2013

Seminar 6: Solutions

Seminar Problems

Write strategies and sketch solutions for your own use during seminar:

1. Problems 5.20(c) and (d) (p. 242). The answer to problem 5.20 (a) is ρ = 1.4 × 1010 C/m3

and (b) is v = 9.1× 10−3 cm/s.
2. Problem 5.21 (p. 243).
3. Problem 5.26 (p. 248). In discussing this problem we will discuss why some approaches for
calculating vector potential do not work for this problem, and what approaches do work (Griffiths
says “by whatever means you can think of...” because some approaches don’t work).
4. Problem 5.56 (p. 262).

Problems:

Warmup assignment (due Monday at 4:45 p.m.): Griffiths problems 5.10(a), 5.14(b), and
5.32.

1. Steady state: Show that if the current is steady state (i.e., all partial time derivatives vanish)
then dI/d` = 0, where ` lies along the wire carrying the current.

Solution:

There are several ways of solving this problem; here are a few:

2. Magnetic field of a rotating disk : 5.48 (connects to a classic experiment)

3. Hall effect : 5.41 (this describes how we tell the sign of the charge carriers)

4. An better approximation to the solenoid

A. Find the magnetic field along the axis of a solenoid: Problem 5.11.

Solution: From Ex. 5.6 we know that the magnetic field a distance z above the center of a circular
loop of radius R is

B(z) =
µ0I

2

R2

(R2 + z2)3/2
. (1)
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Figure 1: The coordinates for the solenoid.

Let n denote the number of loops per length so that the number of loops in a small length dz is

dN = ndz, (2)

then we have

B(z) =

∫
dB =

µ0In

2

∫ z+L/2

z−L/2

1

(R2 + z2)3/2
dz = α

[
z+√

R2 + z2+
− z−√

R2 + z2−

]
, (3)

where α ≡ Inµ0/2 and z± = z ± L/2.

B. Now we will use some techniques described in Chapter 3 in order to (approximately) determine
the magnetic field off of the axis. Inside of the solenoid the equation of magnetostatics are

~∇ · ~B = 0, (4)

~∇× ~B = 0. (5)

The second equation means that we can define a ‘magnetic scalar potential’, φM , for which

~B = −~∇φM . (6)

In addition to this, since ~∇ · ~B = 0, this scalar potential satisfies the Laplace equation:

∇2φM = 0. (7)

Show that the magnetic scalar potential takes the form

φM(r, θ) =
∞∑
`=0

a`r
`P`(cos θ). (8)

For points along the axis we have

φM(z) =
∞∑
`=0

a`z
`. (9)

Solution:

2



Since the ‘magnetic scalar potential’ follows the Laplace equation we know that we can use the
separation of variables to solve it. In spherical coordinates, with azimuthal symmetry, we can
appeal to Eq. (3.65) to write in general

φM(r, θ) =
∞∑
`=0

(
a`r

` +
b`
r1+`

)
P`(cos θ). (10)

In this case we are describing the magnetic field within the solenoid, so we require that the magnetic
scalar potential must be well-behaved at r = 0– this means B` = 0. Therefore the magnetic vector
potential takes the form

φM(r, θ) =
∞∑
`=0

a`r
`P`(cos θ). (11)

Finally, for points along the axis of the solenoid we have cos θ = 1 and you can look up (or check
using Mathematica) that P`(1) = 1 for all values of `. Therefore on axis:

φM(z) =
∞∑
`=0

a`z
`. (12)

C. From part (A) show that the magnetic scalar potential along the z-axis is given by

φM(z) = −α
[
(R2 + z2+)1/2 − (R2 + z2−)1/2

]
, (13)

where

α ≡ µ0NI

4π
, (14)

z± ≡ z ± L/2. (15)

Expand Eq. (13) in a Taylor series around z = 0 up to third order and match the coefficients with
the expansion in Eq. (9) to find a1, a2, and a3.

Solution:

As was pointed out by a few solutions, the constant α as written above is wrong. Lets see what it
should be.

By definition, the magnetic scalar potential is related to the magnetic field through

~B = −~∇φM → Bz(z) = −∂φM
∂z

∣∣∣∣
x=y=0

. (16)

Therefore

φM(z, 0, 0) = −
∫
Bz(z

′)dz′. (17)

Computing this integral we get

φM(z, 0, 0) = −Inµ0

2

(√
R2 + z+ −

√
R2 + z−

)
. (18)

Therefore, α ≡ Inµ0
2

, as before.
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D. Use your approximate solution for φM(r, θ) to write down approximate expressions for Br, Bθ.
Transforming to a cylindrical basis we use the equations

Bs = Br sin θ +Bθ cos θ, (19)

Bz = Br cos θ −Bθ sin θ, (20)

and

s = r sin θ, (21)

z = r cos θ. (22)

Take the ratio Bs/Bz. Identify which characteristics of the solenoid determine the extent to which
the magnetic field is uniform within the coils (as described in Example 5.9).

Solution:

We can now expand our expression for the magnetic scalar potential along the axis and match the
expansion with the coefficients in Eq. (12).

Expanding Eq. (??) to third order in z we have

φM(z, 0, 0) ' − 2Lα√
L2 + 4R2

z +
16LR2α

(L2 + 4R2)5/2
z3. (23)

Therefore we have

a1 = − 2Lα√
L2 + 4R2

, (24)

a2 =
16LR2α

(L2 + 4R2)5/2
. (25)

This, in turn, tells us that

φM(r, θ) ' − 2Lα√
L2 + 4R2

r cos θ +
16LR2α

(L2 + 4R2)5/2
r3

1

2
(5 cos θ − 3 cos θ) . (26)

We are now able to take the gradient of this to determine the form that the magnetic field takes:

Br =
2Lα(L24R2)2 cos θ − 3r2R2(3 cos θ − 5 cos 3θ)

(L2 + 4R2)5/2
, (27)

Bθ = −2Lα(L48L2R2 − 18r2R2 + 16R4 − 30r2R2 cos 2θ) sin θ

(L2 + 4R2)5/2
(28)

It is straightforward (and using Mathematic, it is trivial) to convert this to a cylindrical basis:

Bs =
48Lr2R2α cos θ sin θ

(L2 + 4R2)5/2
, (29)

Bz =
2Lα(L4 + 8L2R2 − 6r2R2 + 16R4 − 18r2R2 cos 2θ

(L2 + 4R2)5/2
. (30)

Finally, we can express this answer in cylindrical coordinates

Bs =
48LR2α

(L2 + 4R2)5/2
sz, (31)

Bz =
2L(L4 + 8L2R + 4R2(4R2 + 3s2 − 6z2))α

(L2 + 4R2)5/2
. (32)
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The usual assumption about the magnetic field inside of a the solenoid is that it is uniform and
points in along the axis. These equations allow us to see how good of an approximation this is!
Comparing the z-component of the magnetic field at the center of the solenoid (z = s = 0) to the
z-component off of the axis we have

Bz(s, z)

Bz(0, 0)
− 1 ' 12R2

L4

(
s2 − 2z2

)
.

12R2

L2
, (33)

where we have expanded the result to leading order in the limit that R � L– i.e., the solenoid is
long and skinny. Therefore, if R = 0.1L the magnitude of the z-component of the magnetic field
varies by less than 0.1% along the length of the solenoid.

In addition to this we can see the relative size of the z-component and s-component of the magnetic
field as we move off of the axis of the solenoid. Again, the usual expression assumes that Bs = 0:

Bs(s, z)

Bz(s, z)
' 24

R2

L4
sz . 24

(
R

L

)3

. (34)

Therefore, for R/L = 0.1 the s-component of the magnetic field is only 0.01% of the z-component
within the solenoid.

In the end, this problem has shown that the approximation that the magnetic field within a solenoid
is directed along the z-axis and is uniform within the solenoid is a very good approximation whenever
R/L� 1.

5. Photon mass.

It is possible that the photon (i.e., electromagnetic waves) carry mass. Mathematically this would
imply that the Poisson equation which determines the electrostatic potential and the magnetic
vector potentials are modified from their usual forms:

∇2V = −ρ/ε0, (35)

∇2 ~A = −µ0
~J, (36)

to

∇2V − µ2V = −ρ/ε0, (37)

∇2 ~A− µ2 ~A = −µ0
~J. (38)

The relationship between these potentials and the fields remains unchanged, namely:

~E = −~∇V, (39)

~B = ~∇× ~A. (40)

A. From these equations, what are the units of the photon’s mass? If this seems strange, remember
that in quantum mechanics the wavelength associated with a moving particle is λ = h/p. If the
photon has a very small mass then it will move at a speed close to the speed of light, c. Use this to
write an expression for the mass of the photon in the usual units.

Solution:
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The de Broglie wavelength is

λ = µ =
h

p
=

h

mγc
→ mγ =

h

cµ
(41)

B. The integral solution to the new equation for the electrostatic potential and the magnetic vector
potential can be written as

V =
1

4πε0

∫
ρ(~r′)

r

e−µrdτ ′, (42)

~A =
µ0

4π

∫ ~J(~r′)

r

e−µrdτ ′. (43)

Write down the electric field due to a point charge in this new theory.

Solution:

A point charge has a charge density given in terms of the Dirac delta function

ρ(~r′) =
q

4π
δ(3)(~r′) (44)

so that the electrostatic potential in this theory becomes

V (~r) =
q

4πε0
eµ~r. (45)

C. Now consider the vector potential produced by a linear current loop, with current I. Integrating
over the loop we can write

~A =
µ0I

4π

∫
e−µr

r

d~̀′. (46)

Using the identity in Problem 1.61e show that this can be written as

~A = −µ0I

4π

∫
e−µr

(
1

r
2

+
µ

r

)
r̂× d~a′. (47)

Now, if we assume that we are very far away from the current loop, ~r ' ~r and the vector potential
becomes

~A ≈ −µ0

4π
e−µr

(
1

r2
+
µ

r

)
r̂ × I

∫
d~a′ =

µ0

4π
e−µr

(
1

r2
+
µ

r

)
(~m× r̂). (48)

Solution:

We are starting from

~A =
µ0I

4π

∫
e−µr

r

d~̀′. (49)

The identity in 1.61e states ∫
S

~∇T × d~a = −
∮
P
Td~̀. (50)

Taking the divergence of e−µr/r we can then write

~A = −µ0I

4π

∫
e−µr

(
1

r
2

+
µ

r

)
r̂× d~a′. (51)
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D. Taking the curl of the vector potential it is straightforward (but VERY tedious)– but, once it is
taken we have the following expression for the magnetic field:

~Bdip =
µ0

4π
e−µr [(3 + µr[3 + µr])(r̂ · ~m)r̂ − (1 + µr[1 + µr])~m] . (52)

Verify that we regain the usual expression for the magnetic field of a dipole when µ = 0.

Solution:

The standard expression in Maxwell’s theory is

~Bdip =
µ0

4π
[3(~m · r̂)r̂ − ~m] . (53)

When µ = 0 it is clear that we regain the usual expression.

E. Imagine we have a magnetic dipole and we measure the magnetic field at a point along the
direction of the dipole moment as well as at a point which is perpendicular to the direction of the
dipole moment. Write down an expression for the ratio of the magnitude of the magnetic field at
those two points.

At the pole we have r̂ · ~m = m and

|Bpole
dip | =

µ0

4π
e−µr [(3 + µr[3 + µr])m(1 + µr[1 + µr])m] =

1

2

µ0

4π
e−µrm(1 + µr). (54)

On the equator we have r̂ · ~m = 0 and

|Bequator
dip | = −fracµ04πe

−µrm(1 + µr + µ2r2). (55)

Taking the ratio of the two we have

Bpole
dip

Bequator
dip

=
2(1 + µr)

1 + µr + µ2r2
. (56)

We can use these measurements to place a constraint on the value of µ. To place the most restrictive
constraint, will we want to make r as large as we can or as small as we can?

Solution:

Let us first assume that the data we collect will be consistent with Maxwell’s theory in which µ = 0.

Then, the data will allow us to place an upper limit on µ. In Maxwell’s theory we expect
Bpole

dip

Bequator
dip

= 2.

Data agrees with this to one part in 1000. Given that the radius of the earth is R⊕ = 6, 400 km
this places a constraint on the mass of the photon µ < 9.8× 108 cm−1. 1

1Goldhaber and Nieto, Phys. Rev. Lett. 21, 567 (1968)
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