Solution to an extension of problem 1

1 Dot and cross your As and Bs.
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In a time dt what mass of fluid (of density p and flowing with velocity ) flows through the surface
defined by vectors L; and L, in the above figure?

Use this to show that the flux of fluid (mass-per time-per area) is
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P .F—A—dt—p(v-n). (1)

z As we discussed in seminar, with the above expression for the flux, we can start to answer some
3‘ interesting questions about everyday science.

Q >0 In partjeuts e discussed the tapering of a stream of water as it flows from a spigot, as shown
E below m We can use our expression for the flux in order to derive an expression which
; predicts ¢ width of the stream will change with distance from the opening of the spigot.

First we note that if the rate of fluid flow, dM/dt, changes along the length of the stream of water
then that would lead to a build up of the water along the stream with time, which we can see does

-& not happen. This means that
g\ aM

Fae const., (2)

¥ As indicated , we will denote the vertical height at the opening of the spigot as h = 0 and
~§Q . 3 take the positive t1011 of h as downward in the figure. We will further denote the cross sectional
§ area of the stream at h = 0 as Ay and the velocity at that point as vg. Therefore as we move along
% the stream we have
A(Ryo(h) = pAguo - ) _ % (3)
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g} QQ% i Figure 1: Water flowing from a spigot.

5 In order to determine how the velocity of the stream changes with height we need to understand
what forces are acting on the water. First among the forces is gravity. The water also experiences a

o| certain amount of surface tension, but we will assume that this force is insignificant when compared

~ .

~= |_to the force of gravity.

"’Z Therefore, each small bit of water, of mass dm, accelerates at a constant rate g ~ 10 m/s%. We can
R determine v(h) by using the standard equations of kinematics, but it turns out that it is easier to
determine this relationship by considering energy conservation.
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3 \g i@ Figure 2: Analytic result for water flowing from a spigot.

At the top of the spigot all of the energy in the water is in the form of kinetic energy: E = dmv§/2.
After the water has fallen a distance h it has energy E = dmw(h)?/2 — dmgh (I know that the
potential energy is —mgh because the speed of the water must increase as we look further along
the stream). Therefore, energy conservation dictates:

el wv’?
—dm’uo = —dmv — dmgh — v(h) = /v + 2qh 6{0& < P‘

We can further write A = 7[w(h) /2]2 where w(h) is the diameter of the stream’s cross-sectional
area. Combining Eq. (3) with Eq. (4) we have
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(w(h)>2 B Vo . w(h) ( 1 >1/4 5)
Wo VvE +2gh Wo 1+ 2gh/v§ -
Taking g = 10 m/s? and vy = 10 cm/s (which seems like a reasonable speed) we can now plot how
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the width of the stream decreases with distance from the spigot. I have shown that in Fig. 2 We
can see that the width of the stream is qualitatively similar to the actual picture in Fig. 1.



