1. Why the cross product has no inverse.

For all vectors a and b in \mathbb{R}^3 , we can write the cross product $a \times b$ as a matrix operation

$$\boldsymbol{a} \times \boldsymbol{b} = [\boldsymbol{a}]_{\times} \boldsymbol{b}$$

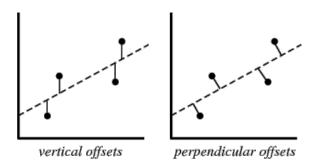
where $[a]_{\times}$ is a *skew-symmetric* matrix depending only on a. A matrix A is skew-symmetric if

$$\boldsymbol{A}^T = -\boldsymbol{A}$$

- **a.** What are the elements of $[a]_{\times}$? Note that each element of $(a \times b)$ is linear in the elements of b. What are the coefficients?
- **b. Show that** $[a]_{\times}$ has a non-trivial null space. You can do this either by computing $\det([a]_{\times})$ or by showing that one of its columns can be expressed as a linear combination of the other two.
- **c.** Explain why the cross product has no inverse. That is, for a given vector c, why is there no unique vector b such that $a \times b = c$?

2. Lines and homogenous coordinates.

- **a.** Line between two points. In class, we saw that the intersection of two lines $\tilde{\ell}_1$ and $\tilde{\ell}_2$ can be computed by $\tilde{\ell}_1 \times \tilde{\ell}_2$. Similarly, the line connecting two points \tilde{p}_1 and \tilde{p}_2 can be computed by $\tilde{p}_1 \times \tilde{p}_2$. Prove this using properties of the dot product and the cross product. Hint: the proof should be trivial.
- **b. Distance from a point to a line.** Given the line $\tilde{\ell} = (a, b, c)$ with $a^2 + b^2 = 1$, show that for any point \tilde{p} , the *signed distance* from the point to the line is computed by $d = \tilde{\ell} \cdot \bar{p}$, where the sign of d indicates which side of the line the point is on, and the magnitude is equal to the perpendicular distance from \tilde{p} to $\tilde{\ell}$.
- **c.** Least squares line fitting with perpendicular distances. Least squares line fitting typically minimizes the vertical offsets between a line and a set of points. Using the homogeneous least squares technique we discussed in class, derive a method to minimize the *perpendicular* offsets instead.



http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html

Given n augmented points $\bar{p}_1, \dots, \bar{p}_n$, your method should seek to find the line $\tilde{\ell}$ that minimizes the residual

$$\sum_{i=1}^{n} \left(\tilde{\boldsymbol{\ell}} \cdot \bar{\boldsymbol{p}}_{i} \right)^{2}$$

subject to $\|\tilde{\boldsymbol{\ell}}\| = 1$.

3. Rigid transformations.

A 2D rigid transformation is an invertible transformation which preserves distances. For any point $p \in \mathbb{R}^2$, we can write the transformation as

$$p' = Rp + t$$

where R is a 2 \times 2 rotation matrix and t is a translation vector.

- **a.** Matrix representation. Show that the transformation can be represented as a 3×3 homogenous matrix \tilde{M} such that $\bar{p}' = \tilde{M}\bar{p}$. What is the matrix?
- **b. Matrix inverse.** Solve for p in terms of R, t, and p'. What is \tilde{M}^{-1} ?
- c. Rigid transformation of a line. Given a rigid transformation specified by (R, t) and a line $\tilde{\ell}$, what is the corresponding line $\tilde{\ell}'$ such that for all \bar{p} ,

$$ilde{m{\ell}}'\cdotar{m{p}}'= ilde{m{\ell}}\cdotar{m{p}}$$

Express $\tilde{\ell}'$ in terms of \tilde{M} and $\tilde{\ell}$.