1. Why the cross product has no inverse.

For all vectors \boldsymbol{a} and \boldsymbol{b} in \mathbb{R}^{3}, we can write the cross product $\boldsymbol{a} \times \boldsymbol{b}$ as a matrix operation

$$
a \times b=[a]_{\times} b
$$

where $[\boldsymbol{a}]_{\times}$is a skew-symmetric matrix depending only on \boldsymbol{a}. A matrix \boldsymbol{A} is skewsymmetric if

$$
\boldsymbol{A}^{T}=-\boldsymbol{A}
$$

a. What are the elements of $[\boldsymbol{a}]_{\times}$? Note that each element of $(\boldsymbol{a} \times \boldsymbol{b})$ is linear in the elements of \boldsymbol{b}. What are the coefficients?
b. Show that $[a]_{\times}$has a non-trivial null space. You can do this either by computing $\operatorname{det}\left([\boldsymbol{a}]_{\times}\right)$or by showing that one of its columns can be expressed as a linear combination of the other two.
c. Explain why the cross product has no inverse. That is, for a given vector \boldsymbol{c}, why is there no unique vector \boldsymbol{b} such that $\boldsymbol{a} \times \boldsymbol{b}=\boldsymbol{c}$?

2. Lines and homogenous coordinates.

a. Line between two points. In class, we saw that the intersection of two lines $\tilde{\ell}_{1}$ and $\tilde{\ell}_{2}$ can be computed by $\tilde{\ell}_{1} \times \tilde{\ell}_{2}$. Similarly, the line connecting two points $\tilde{\boldsymbol{p}}_{1}$ and $\tilde{\boldsymbol{p}}_{2}$ can be computed by $\tilde{\boldsymbol{p}}_{1} \times \tilde{\boldsymbol{p}}_{2}$. Prove this using properties of the dot product and the cross product. Hint: the proof should be trivial.
b. Distance from a point to a line. Given the line $\tilde{\boldsymbol{\ell}}=(a, b, c)$ with $a^{2}+b^{2}=1$, show that for any point $\tilde{\boldsymbol{p}}$, the signed distance from the point to the line is computed by $d=\tilde{\boldsymbol{\ell}} \cdot \overline{\boldsymbol{p}}$, where the sign of d indicates which side of the line the point is on, and the magnitude is equal to the perpendicular distance from $\tilde{\boldsymbol{p}}$ to $\tilde{\ell}$.
c. Least squares line fitting with perpendicular distances. Least squares line fitting typically minimizes the vertical offsets between a line and a set of points. Using the homogeneous least squares technique we discussed in class, derive a method to minimize the perpendicular offsets instead.

http://mathworld.wolfram.com/LeastSquaresFittingPerpendicularOffsets.html
Given n augmented points $\overline{\boldsymbol{p}}_{1}, \ldots, \overline{\boldsymbol{p}}_{n}$, your method should seek to find the line $\tilde{\boldsymbol{\ell}}$ that minimizes the residual

$$
\sum_{i=1}^{n}\left(\tilde{\boldsymbol{\ell}} \cdot \overline{\boldsymbol{p}}_{i}\right)^{2}
$$

subject to $\|\tilde{\ell}\|=1$.

3. Rigid transformations.

A 2D rigid transformation is an invertible transformation which preserves distances. For any point $\boldsymbol{p} \in \mathbb{R}^{2}$, we can write the transformation as

$$
\boldsymbol{p}^{\prime}=\boldsymbol{R p}+\boldsymbol{t}
$$

where \boldsymbol{R} is a 2×2 rotation matrix and \boldsymbol{t} is a translation vector.
a. Matrix representation. Show that the transformation can be represented as a 3×3 homogenous matrix $\tilde{\boldsymbol{M}}$ such that $\overline{\boldsymbol{p}}^{\prime}=\tilde{\boldsymbol{M}} \overline{\boldsymbol{p}}$. What is the matrix?
b. Matrix inverse. Solve for \boldsymbol{p} in terms of $\boldsymbol{R}, \boldsymbol{t}$, and \boldsymbol{p}^{\prime}. What is $\tilde{\boldsymbol{M}}^{-1}$?
c. Rigid transformation of a line. Given a rigid transformation specified by $(\boldsymbol{R}, \boldsymbol{t})$ and a line $\tilde{\ell}$, what is the corresponding line $\tilde{\ell}^{\prime}$ such that for all $\overline{\boldsymbol{p}}$,

$$
\tilde{\ell}^{\prime} \cdot \bar{p}^{\prime}=\tilde{\ell} \cdot \bar{p}
$$

Express $\tilde{\ell}^{\prime}$ in terms of \tilde{M} and $\tilde{\ell}$.

