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Mathematics disability (MD) creates life-long challenges
(Rivera-Batiz, 1992) for 5%—9% of the population (e.g_,
Badian, 1983; Gross-Tsur, Manor, & Shalev, 1996). This
makes prevention, which has been shown. o substantially
improve mathematics outcomes (e.g., Fuchs, Fuchs,
Yazdian, & Powell, 2002; Griffin, Case, & Sicgler, 1994),
critical. Nevertheless, no intervention is effective for all
students. Fuchs et al, (2005}, for example, showed that a
first-grade prevention program was highly efficacious at
reducing the prevalence of MD at the end of first grade,
with effects maintaining one year after tutoring ended
{Compton, Fuchs, & Fuchs, 2009). Yet, 3%—6% of the
school population continued to manifest severe mathematics
deficits. Because we cannot expect prevention activities to
be universally effective, the need for intensive remedial
intervention persists even when strong prevention services
are in place.

In this chapter, we focus on the remediation of
mathematics deficits. Our emphasis is on third grade
when serious mathematics deficits are clearly established
and identification of MD often begins (Fletcher, Lyon,
Fuchs, & Bames, 2007). We focus on arithmetic and word
problems because they represent two major dimensions
of the mathematics curriculum in the primary grades. We

begin by providing background on these two aspects of.

mathematical cognition. We then summarize the literature
on the remediation of arithmetic and word-problen
deficits. Next, using this literature, we derive principles for
cffective remediation and lustrate these principles with
one remedial futering protocol. Finally, we discuss salient
issues concerning MD and its remediation.

434

Development of and Distinctions between Arithmetic
and Word-Problem Skill

Arithmetic refers to simple computation problems (e.g., 5
+6=11; 12 -5 =7) that cannot be solved via algorithms,
To answer arithmetic problems, mathematically competent
individuals, including children and aduits, use & mix of
counting strategies, decomposition strategies, and antomatic
retrieval of answers from long-term memory. Consensus
exists that arithmetic is essential (Kilpatrick, Swatford, &
Findell, 2001), and research shows that arithmetic fuency
is a significant path to procedural calculation and word-
problem skill (Fuchs, Fuchs, Compton, et al., 2006}, In
developing arithmetic fluency, typical children develop
procedural efficiency with counting, First they count two
sets (e.g., 4 + 5) in their entirety {ie., 1,2, 3,4, 5, 6,7, &,
9); then they count from the first addend (i.e., 4, 5,6, 7, &,
9); and eventually they count from the larger addend (i.e., 5,
6,7, 8, 9). As conceptuat knowledge about number becomes
more sophisticated, they also develop decomposition
strategies for deriving answers (e.g., [4 + 4 = 8] + |
9. As increasingly efficient counting and decomposition
strategies facilitate consistent and quick pairing of problems
with correct answers, associations become established in
long-term memory, and students gradually favor memory-
based retrieval of answers (Ashcraft & Stazyk, 1981; Geary.
Widaman, Little, & Cormier, 1987; Goldman; Pellegrino,
& Mertz, 1988; Groen & Parkman, 1972; Siegler, 1987).
Students with MD manifest greater difficulty with
counting {Geary, Bow-Thomas, & Yao, 1992; Geary, Hoard.
Byrd-Craven, Nugent, & Numtee, 2007); they persist with
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ature hack-up strategies {Geary ef al., 20607); and they
i1 to make the shift to memory-based retrieval of answers
{Fleishner, Garnett, & Shepherd, 1982; Geary et al., 1987,

:'Goldman et al., 1988). When children with MD do retrieve.

_ answers from memory, they commit more errors and their
: retrieval speeds are less systematic than younger, typically
+ developing children (Geary, Brown, & Samaranayake, 1991;
‘Gross-Tsur et al., 1996; Ostad, 1997). Some researchers
{.g., Fleishner et al,, 1982.; Geary et al,, 1987; Goldman
et al., 1988) consider arithmetic to be a signature deficit of
studenis with MD, and difficulty with automatic retrieval
- of arithmetic facts is one of the most consistent findings
“in the MD literature (e.g., Cirine, Ewing-Cobbs, Barnes,
' Fuchs, & Fletcher, 2007; Geary et al., 2007, Jordan, Hanich,
.& Kaplan, 2003).
~ Arithmetic is incorporated into the curriculum at
kindergarten through second grade, although many general
educators do not explicitly promote arithmetic flnency
(Miller & Hudson, 2007). Even so, typically developing
gtudents have considerable arithmetic fluency by third
grade (Cirino et al., 2007), and when students still manifest
deficiencies in third grade, a pressing need for remediation
exists.
Less is known about typical development or about how
students with MD come o develop difficulty with word
problems than is known about competence with arithmetic.
In contrast o arithmetic, where problems are already setup
for solution, a word problem requires students o tse text to
identify missing information, construct the number sentence
that incorporates the missing information, derive the
calculation problem for finding the missing information, and
finally solve that calculation problem. The need to use text
to construct the problem model appears to alter the task, and
some research snggests that calculations and word problems
" may represent distinct aspects of mathematical cognition
(e.g., Fuchs, Fachs, Compton, et al., 2006; Fuchs, Fuchs,
Stuebing, et al., 2008; Swanson & Beebe-Frankenberger,
2004). If so, then calcuiation and word-problem skill would
need to be considered separately in remediation.

The Remediation Literature

Arithmetic

Three major approaches for remediating arithmetic deficits
have been documented in the literature: providing dril}
and practice, developing conceptual understanding to
foster decomposition strategies, and teaching strategic
_counting. The literature, however, has focused heavily

-on drill and practice. Okolo (1992} and Christensen and

Gerber {1990) contrasted computerized drill and practice
in a game versus a drill format. Okolo found no significant
differences between groups. Christensen and Gerber, by
contrast, found that students were disadvantaged by the
game format, perhaps due to its distracting nature. Tournaki
(2003} contrasted paper-pencil drill and practice with a
strategic counting condition. Resalts showed an advantage
for strategic counting, but the validity of the study was

compromised because the strategic counting condition
incorporated stronger instructional principles than did the
drill and practice condition. All three prior studies failed

__to include a control group to assess whether drilf and

practice effected better cutcomes than business-as-usual
schooling. Also, because this work was restricted largely
to drill and practice, it does not contrast alternative forms
of intervention and therefore fails to inform the nature
of remediation. In addition, because participants in these
prior studies had school-identifled learning disabilities, it
is unclear whether effects apply to students who experience
mathematics ditficulty.

To address these limitations, we recently extended this
literature in a series of four studies in which we relied on
random assignment, incorporated different approaches to
remediation, included a control condition, and screened
participants to ensure MD. In the first study (Fuchs, Powell,
et al.,, 2008), our approach to remediation was drill and
practice although we took an unconventional approach.
Instead of simply requiring students to answer arithmetic
probiems, as typicaily done with drill and practice, we tried to
ensure that students would practice correct responses. Each
computerized drill and practice irial occurred as follows:
Students saw a complete arithmetic problem “flash” briefly
(i.e., 1.3 sec) and then reproduced the complete arithmetic
problem (i.e., question stem and answer) from short-term
memory. The assumption was that with repeated pairings
of a question stem and its correct answer, the student would
commii the arithmetic problem to long-term memory.
Typically developing students achieve such automatic
retrieval through repeated pairings, which occur naturally
as studenis’ counting sirategies become more efficient and
their back-up sirategies become more sophisticated. Given
the deficiencies of students with MD with counting and
decomposition strategies, we decided to test the efficacy
of the “direct route” for reliable and efficient pairings
just described. We randomly assigned participants o four
conditions that all relied on computer-assisted instruction
with tutor supervision: arithmetic remediation, procedural
compultation-estimation remediation, remediation that
combined arithmetic with procedural computation-
estimation instruction, and word identification remediation
{i.e., control). On arithmetic outcomes, only students who
received arithmetic remediation outperformed those in the
competing conditions. Effect sizes were large (0.69-0.78).
We concluded that a “direct route” for drill and practice,
which promoted reliable and efficient pairings of question
stems with correct responses, was efficacions. Even so,
we questioned whether a stronger focus on developing
conceptual understanding to foster decomposition
strategies, the second major approach to remediating
arithmetic problems, might enhance leamning.

Consequently, Powell, Fuchs, Fuchs, Cirino, and
Fletcher (2009) randomly assigned students to four
conditions: drill and practice as in Study 1; drill and
practice as in Study | plus explicit conceptual instruction
focused largely on decomposition strategies; procedural
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computation-estimation remediation; and control (no
ttering). The initial conceptual lessons focused on addition
and subtraction concepts, adding/subtracting 0 and 1, and
the commutative property of addition. Then, a tutor-directed
lesson occurred whenever a new arithmetic family was
introduced {every 3 to 6 sessions). The tutor focused the
student’s attention on how number sentences within the
family are related and used manipulatives to teach sirategies
for decomposition in relation to the 10 set and in relation
to doubles arithmetic problems {e.g., 2 + 2 = 4). Students
also practiced decomposition strategies witk number line
flash cards {students derived equations for depictions of
arithmetic problems on a number line that delineated the
10 set) and generated arithmetic problems for a family in a
fixed time. The condition with conceptual lessons was, by
necessity, longer than the condition that relied entirely on
driil and practice. Despite more instructional time, effect
sizes comparing each arithmetic remediation to the control
condition were similar: 0.50 and 0.53. The same was true
when comparing each NC remediation to the procedural
computation-estimation remediation: 0.31 and 0,37. This
suggests that explicit conceptual instruction to help students
develop decomposition strategies for solving arithmetic
problems does not impart added value over a direct route
for intensive drill and practice,

We next turned our attention to the third major approach
for remediating arithmetic deficits: teaching strategic
counting (Fuchs, Powell, Seethaler, et al., 2009}, Although
students are not explicitly taught strategic counting in
school, typically developing students (but not students
with MD} discover these strategies or their own (Ashcraft
& Stazyk, 1981; Geary et al., 1987; Goldman et al., 1988:
Groen & Parkman, 1972; Siegler, 1987). With inefficient
counting strategies, MD students pair question stems
with answers slowly, taxing short-term memory, and their
answers are often incorrect. Long-term representations for
automatic retrieval of arithmetic problems therefore fail to
establish correctly. It is also possible that students with MD
have special difficalty committing arithmetic problems to
memory. We hoped that explicit instruction on couating
strategies would build arithmetic fluency (even if students
remained incapable of automatic reirieval). We contrasted
two conditions that incorporated strategic counting. One
combined strategic counting with intensive drill and practice
{(as in Studies 1 and 2). The other, which was embedded
in word-problemn remediation, taught the same strategic
counting, but practice with arithmetic problems was
confined to 4-6 min each session.

In this third study, we randomly assigned students to
three conditions: strategic counting arithmetic remediation
pius drill and practice as in Studies 1 and 2; word-problem
remediation that incorporated strategic counting (without
the drili and practice used in Studies 1 and 2}; and control.
Both remediations effected superior arithmetic fluency
compared to the control group (effects sizes: .52 and 0.58).
The comparability of outcomes for the two remediation
groups is notable because the condition that incorporated

drill and practice allocated dramatically more tip o
arithmetic over the 48-session intervention: 20-30 mjy Der
session versus 4-6 min per session. We, therefore, conclude
that.teaching students strategic counting, while Drovidip
frequent but brief practice to gain efficiency in using thoge
counting strategies, results in arithmetic fluency thy is
comparable to an expanded arithmetic remediation thyy j
devoted entirely to arithmetic and that also incorporates the
drifl and practice used in Studies 1 and 2. Study 3 regyjg
suggested promise for the strategic counting remediation,
In our fourth study (Fuchs, Powell, Seethaler, o al,
2010), we extended the Study 3 findings by assessing the,: :
effects of strategic counting instruction, with and withgut
deliberate practice with those counting strategies, op
arithmetic fluency. We contrasted a no-tutoring contro]
group against two variants of strategic counting instruction
Both were embedded in word-problem remediation. In one
variant, the focus on arithmetic was limited to a single lessop -
that simply taught the counting strategies {ie., strategic
counting instruction without deliberate practice). In the
other variant, students were taught counting strategies in
the same single lesson but then also practiced strategic
counting for answering arithmetic problems for 4-6 min
each session (i.e., strategic counting instruction with
deliberate practice). Pinpointing the value of practice in
this controlled way is important because althongh it is
assumed necessary for students with MD, no studies had
isolated its effects for this population of learners. Study 4
findings suggest its importance. The remediation condition
that incleded deliberate practice with the counting stralegies
effected superior arithmetic fluency compared to the control
condition, with a large effect size of 0.67. More importan,
students who received deliberate practice also outperformed
those who were taught the counting strategies but were
not provided with deliberate practice, with an effect size
of 0.22. This effect size meets the federal What Works
Clearinghouse criterion for effective practice.

Word Problems :

The major approach in the research literature for developing
word-problem skill for students with learning difficulties
relies on schema theory, which is based on the concept
of lateral transfer by which children recognize problems
4CTOSS numerous experiences o abstract generalized
problem-solving strategies. Some refer to the abstraction of
generalized problem-solving strategies as the development
of schemas (Brown et al., 1992; Gick & Holyoake, 1983).
A schema is a category that encompasses similar problems;
it is a problem type (Chi, Feltovich, & Glaser, 1981; Gick
& Holyoake, 1983; Quilici & Mayer, 1996). For example,
word problems that deseribe parts being combined inte 2
whole represent a “Total” problem type (e.g., John has 3
cats. He also kas 5 dogs. How many pets does John have?);
by conirast, the “Difference” problem type compares (W0
quantities {(e.g., John has 5 pers. His best friend has 2 pets.
How many more pets does John have?). Instruction based
on schema theory encourages students to develop a schema
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for each problem type. The broader the schema, the greater
" the probability students wiil recognize a novel problem as
. pelopging to that familiar schema for which they know a

‘wolution method. With broader schemas, problem-solving ..

. performance improves. For example, a problem that betongs
1o & familiar problem type may appear novel {but still
" require a similar solution strategy) because it incorporates
irrelevant information or relevant information outside of
the problemn narrative (e.g., in tables) or includes unusual
* yocabuiary and so on. When students have broad schemas
that systematically incorporate novel features, they know
‘when to apply solution strategies, enhancing the word-
problem performance. Broadening schemas should affect
breadth of learning or transfer (Brown et al., 1992; Glaser,
1984).
o facilitate schema development, teachers must first
seach problem-solution rules and ther help students develop
schemas for the problem types and awareness of those
schemas (Cooper & Sweller, 1987). In the past decade,
some research programs have relied on schema theory to
design explicit instruction for enhancing word-problem
gkill. Jitendra and colleagnes demonstrated acquisition,
maintenance, and transfer effects for students with serious
mathematics deficits or with risk for MD at eighth grade
(Jitendra, DiPipi, & Perron-Jones, 2002), sixth grade
(Xin, Jitendra, & Deatline-Buchman, 2005), and third and
fourth grades {Jitendra et al., 2007; Jitendra et al., 1998;
Yitendra & Hoff, 1996). In our intervention work, we have
also relied on schema theory. Similar to Jitendra’s schema-
based strategy instruction, we teach students to understand
the underlying mathematical structure of the problem
type, to recogaize the basic problem type, and to solve
the problem type. In contrast to Jitendra, we incorporate
~ a fourth instructional component, in keeping with Cooper
and Sweller (1987), by explicitly teaching students to
broaden those schema by learning about transfer features
(e.g., irelevant information; novel questions that require
an extra step; relevant information presented in charts;
combinations of problem types). In cur work, we have
addressed these and other transfer features. The addition
of explicit instruction on transfer featnres should lead to
more flexible and successful problem solving. We refer to
the combination of all four instructional components as
schema-broadening insiruction, or SBL
In our first randomized control study, Fuchs, Fuchs,
Prentice, Burch, Hamlett, Owen, et al. (2003) isolated the
effects of our fourth instructional comiponent (explicitly
teaching for transfer) from the first three instructional
components (teaching students to understand the underlying
mathematical structure of the problem type, to recognize the
basic problem type, and to solve the problem type). Working
with third graders without M), we found that SBI (i.e., all

four components) strengthened word-problem performance.

over and beyond experimenter-designed instruction on the
first three instructional components. In a series of additional
studjes on SBI, also conducted in general education (Fuchs,
Fuchs, Craddock, et al., 2008; Fuchs, Fachs, Finelli, Courey,

& Hamlett; 2004; Fuchs, Fuchs, Finelli, et é.l., 2000; Fuchs,
Tuchs, Prentice, Burch, Hamlett, Owen, & Schroeter, 2003,
Fuchs, Fuchs, Prentice, Hamlett, et al., 2004), effect sizes

_favoring SBI were large (0.89-2.14). Random assignment,

however, occurred at the classroom level, with limited
numbers of students with MD.

More recently, Fuchs, Seethaler, et al. (2008} piloted
SBI, this time conducted as tutoring rather than whole-
class instruction, for third graders whom we identified
as having mathematics and reading difficulties (i.e.,
scoring on average at the 10th percentile in math and
reading). The 35 participants were randomly assigned to
receive SBI tutoring or to continue in their mathematics
program without modification. Results favored the word-
problem performance among the tutored students, but
instructional time across the tutored and control students
was not controlled, a limitation we addressed in our next
study (Fuchs, Powell, Seethaler, et al., 2009), where we
contrasted SBI tutoring not only to a control group but aiso
to a contrasting tutoring condition. Results supported the
efficacy of SBI tutoring in relation to the control group as
well as the competing, active condition, and findings were
replicated in Fuchs, Powell, Seethaler, et al., (2010).

General Principles for Effective Mathematics
Remediation

In this section, we provide an overview of a set of principles
for remediating arithmetic and word-problem deficits. Then,
we illustrate the application of these principles using one
remedial mtoring protocol.

Seven Research-Based Principles for Effective
Remediation

The first principie of effective intervention for students
with MDD is instructional explicitmess. Typically developing
students profit from the general education mathematics
program that relies, at least in part, on a constructivist,
inductive approach to instruction. Students who accrue
serions mathematics deficits, however, fail to profit from
those programs in a way that produces understanding
of the structure, meaning, and operational requirements
of mathematics. A meta-analysis of 58 math studies
(Kroesbergen & & Van Luit, 2003) revealed that stadents
with MD benefit more from explicit instruction than
from discovery-oriented methods. Therefore, effective

“intervention for students with MD requires explicii,

didactic instruction in which the teacher directly shares
the information the child needs to learn and systematically
supports student mastery.

Explicitness is not, however, sufficient. A second
and often overlooked principle of effective intensive
mathematics intervention is instructional design to
minimize the learning challenge. The goal is to anticipate
and eliminate misunderstandings with precise explanations
and with the use of carefully sequenced instruction so that
the achievement gap can be closed as quickly as possible.




438 Lynn 8. Fuchs ¢t al.

This 18 especially important given the ever-changing and
multiple demands of the mathematics curriculom.

The third principle of effective intensive mathematics
intervention is the requirement that instruction provide a
strong conceptual basis for procedures. Special education
‘is already strong in emphasizing drill and practice, a
critical and fourth principle of effective practice. Yet,
special education has sometimes neglected the conceptual
foundation of mathematics, and such neglect can cause
confusion, learning gaps, and a failure to maintain and
integrate previously mastered content. In terms of drill
and practice, we note that this practice needs to be rich
in cumulative review, the fiftk principle of effective
intervention.

The sixth principle concerns the need to incorporate
motivators to help students regulate their attention
and behavior and fo work hard. Students with learning
disabilities often display attention, motivation, and self-
regulation difficulties, which may adversely affect their
behavior and learning (e.g., Fuchs et al., 2005, 2006). By
the time students enter intensive intervention, they have
experienced repeated failure, causing many to avoid the
emotional stress associated with mathematics. They no
longer try to learn for fear of failing. Therefore, intensive
intervention must incorporate systematic self-reguiation
strategies and motivators; for many students, tangible
reinforcers are required.

The seventh and final principle of remediation is the
need for systematic, ongoing progress monitoring to gauge
the effectiveness of a tutoring program for the individual
student. No instructional method, even those validated
using randomized control studies, works for afl students,
Because schools must assume that validated intervention
protocols will work for most but not all students, schools
need to monitor the effects of interventions on individual
children’s learning. That way, children who do not respond
adequately can be identified promptly, and the teacher can
adjust the intervention to develop an individually tailored
instructional program. This leads us to a seventh essential
principle of intensive remedial programming: ongoing
progiess monitoring. Teachers use progress monitoring to
determine whether a validated treatment protocol is in fact
effective for a given student. When progress monitoring
reveals that a student is failing to respond as expected to a
validated intervention protocol, progress monitoring is then
used for a second purpose: to formulate an individually
tailored instructional program that is in fact effective for
that student.

Incorporating the Seven Research-Based Principles for
Effective Remediation: A Sample Tutoring Protocol

To iltustrate the use of the first six research-based principles
for effective remediation, we describe a validated tutoring
program called Pirate Math, designed to remediate
arithmetic as well as word-problem deficits while building
procedural calculation and aigebra skill. We incorporate
a pirate theme because within this schema-broadening

- maps.” After we describe Pirate Math and explain hoy, it

instructional program, students are taught o Iepresent the
underlying structure of word problem types using algebraje
equations. “They find X, just like Pirates find X on treasyre

incorporates the first six principles of effective remediation
we then explain how one special education tCaChe;
implemented Pirate Math in conjunction with Systematic,
ongoing progress monitoring, the seventh instructiong;
principle, to assess the student’s response to Pirate Math
and to individualize the student’s program as required,

How Pirate Math addresses the first six principles of
effective remediation.  Pirate Math comprises four units:
an introductory unit, which addresses mathematics skills
foundational to solving word problems, and three word.
problem units, each focused on a different type of word
problem. Pirate Math has been validated for use in smaj
Zroups as a secondary prevention intervention; it has aigg
been validated for one-to-one implementation at the tertiary
prevention level. Every tutoring lesson is scripted, byt
scripts are studied; they are not read or memorized. Pirate
Math runs for 16 weeks, with 48 sessions (3 per week),
Bach session lasts 20~-30 min. The instruction, as outlined
below, is systematic and explicit; it is designed with care
to minimize the learning challenge; it is rich in concepis: it
incorporates drill and practice as well as cumulative review:
and itrelies on systematic reinforcement to encourage good
attention, hard work, and accurate performance.

The infroductory unit addresses mathematics skills
foundational to word problems. Tutors teach a single lesson
ont strategic counting for deriving answers to arithmetic
problems, review algorithms for double-digit addition and
subtraction procedural calculations, teach methods to solve
for “X” in any position in simple algebraic equations (i.e.,
a+b=c;d-e=f), and teach strategies for checking work
within word problems.

The single strategic counting lesson is designed to
remediate arithmetic deficits. Students are taught that if
they “just know” the answer to an arithmetic problerm, they
“pull it out of their head.” If, however, they do not know an
answer immediately, they “count up.” Strategic counting
for addition and subtraction is introduced with the number
line. For addition, the min sirategy is taught: Students start
with the bigger number and count up the smaller number
on their fingers. The answer is the Tast number spoken. For
subtraction, the missing addend counting strategy is taught,
which requires new vocabulary. The minus number is the
riumber directly after the minus sign. The number vou start
with is the first number in the equation. Students start with
the minus number and count up to the number they start
with. The answer {s the number of fingers used to count up.

Practice in strategic counting is then incorporated in
subsequent lessons, The tutor begins each session by asking
the student, “What are the two ways to find an answer to a
math fact?” The student responds, “Know it or count up.”
Then, the student explains how to count up an addition
problem and how to count up a subtraction problem. Nexst,




‘fhe turor requires the student to count up two addition and
two subtraction problems. Then, the tutor conducts a flash
card warm-up activity, in which students have 1 min to
ansWET arithmetic problems. If they respond incorrectly,
fhe tutor Tequires them to count up until they derive the
worrect answer. At the end of 1 min. the tutor counts the
cards, and the student then has another min to beat the first
score. Also, throughout the lesson, whenever the student
‘makes an arithmetic error, the tutor fequires the student {0
count up. Finaily, when checking the paper-pencil review,
(he tutor corrects arithmetic errors by demonstrating the
gounting strategy.

Fach of the three word-problem units focuses on one
word problem type and, after the first probiem-type unit,
subsequent uaits provide systematic, mixed cumuiative
review that includes previously taught problem: types. The
word problem types are Total (two or more amounts being
combined), Difference (two amounts being compared), and
Change {initial amount that increases or decreases). Each
word-problemnt session comprises six activities. The first
is the counting strategies review and flash card warm-up
already described. '

Word-problem warm-up, the next activity, lasts
approximately 2 min and is initiated during the first word-
problem unit. The tutor shows the student the word problem
that the student had solved during the previous day’s paper-
and-pencil review. The student explains to the tutor how he
or she solved the problem.

. Conceptual and strategic instruction is the next activity.
It fasts 1520 min Totors provide scaffolded instraction in
the underlying structure of and in solving the three types
of word problems (i.e., developing a schema for each
problem type), along with instruction on identifying and
- integrating transfer features (to broaden students’ schema
for each problem type), using role-playing, manipulatives,
instructional posters, modeling, and guided practice. In each
lesson, students solve three word problems, with decreasing
amounts of suppors from the tutor.

In the Total unit, the first problem type covered, tutors
teach students to RUN through a problem: a 3-step strategy
prompting students to Read the problem, Underline the
question, and Name the problem type. Students used the
RUN strategy across ail three problem types. Next, for
each problem type (i.e., schema), students are taught an
algebraic equation to represent the underlying structure of
that problem type and to identify and circle the relevant
information that fills the slots of that equation. For example,
for Total problems, students circle the item being combined
and the numerical values representing that item, and then
label the circled numerical values as “P1” (i.e., for pai‘t one),
“P2” (ie., for part two), and “T” (i.e., for the combined
total). Students mark the missing information with an
“X” and construct an algebraic equation representing the
underlying mathematical structure of the problem type.
For Total problems, the algebraic equation takes the form
of “P1 + P2 = T and the “X” can appear in any of the
three variable positions. Students are taught to solve for
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X, to provide a word latel for the answer, and to check
the reasonableness and accuracy of work. The strategy
for Difference problems and Change probiems follows

- similar steps but uses variables and equations specific to

those problem types. For Difference problems, students
are taught to look for the bigger amount (labeled “B™}, the
smaller amount (labeled “*s™), and the difference between
amounts (labeled “D™), and to use the algebraic equation
“B _ s = D For Change problems, students are taught
to locate the starting amount (labeled “St”), the changed
amount {labeled “C”), and the ending amoun{ (labeled “E™);
the algebraic equation for Change problems is “St +/- C=
E” (+/— depends on whether the change is an increase or
decrease in amount).

For each problem type, explicit instruction to broaden
schemas occurs in six ways. First, students are taught
that because not all numerical values in word problems
are relevant for finding solutions, they should identify
and cross out irrelevant information as they identify the
problem type. Second, students are raught to recognize
and solve word problems with the missing information in
the first or second position of the algebraic equation that
represents the underlying structure of the problem type.
Third, students learn to apply the problem-solving strategies
to word problems that involve addition and subtraction
with double-digit numbers with and without regrouping.
Fourth, students learn to solve problems involving money.
Fifth, students are taught to find relevant information for
solving word problems in pictographs, bar charts, and
pictures. Finally, students learn to solve 2-step problems
that involve two problems of the same problem type or
that combine problem types. Across the three problem-
type units, previously taught problem types are included
for review and practice.

Sorting word problems is the next activity. Tutors read
aloud flash cards, each displaying a word problem. The
student identifies the word problem type, placing the card
on a mat with four boxes labeled “Total,” “Difference,”
“Change.” or “?” Students do not solve word problems;
they sort them by problem type. To discourage students
from associating a cover story with a problem type, the cards
use similar cover stories with varied numbers, actions, and
placement of missing information. After 2 min, the fator
notes the number of correctly sorted cards aand provides
corrective feedback for up to three errors.

In paper-and-pencil review, the final activity, students
have 2 min to complete nine number sentences asking the
student to find X. Ther, students have 2 min to complete
one word problem. Tutors provide corrective feedback and
note the number of correct problems on the paper. Tutors
require students to count up arithmetic errors, and keep
the paper-and-pencil review sheet for the next day’s word-
problem warm-up activity.

A systematic reinforcement program is incorporated.
Throughout each Pirate Math session, tutors award gold
coins foliowing each activity, with the option to withhold
coins for inattention or poor effort. Throughout the session,
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each gold coin earned is placed on a “Treasure Map.”
Sixteen coins lead to a picture of a treasure box and, when
reached, the student chooses a small prize from a real
treasure box. The student keeps the old Treasure Map and
receives a pew map in the next lesson.

How Pirate Math addresses the first seventh principle
of effective remediation. As shown in & series of field-
based randomized control trials (Fuchs, Powell, Seethaler,
et al., 2009; Fuchs, Powell, Seethaler, et al., 2010; Fuchs,
Seethaler, et al., 2008), Pirate Math results in statistically
significart and practically important effects on arithmetic

fluency and word problems, even as it promotes better:

performance on procedural calculations and algebra. So
Pirate Math is demonstrably efficacicus. Nevertheless,
as noted, no instructional method, even those validated
using randomized control studies, works for all students.
This makes it necessary to incorporate ongoing progress
monitoring as an essential element of intensive remedial
programming. Teachers use progress monitoring to
determine whether a validated treatment protocol is in fact
effective for a given student. When progress monitoring
reveals that a student is failing to respond as expected to
a validated intervention protocol, progress monitoring is
then used to formulate an individually tailored instructional
program that 1s in fact effective for that student,
Curriculom-based measurement (CBM) is the form
of progress monitoring for which the preponderance of
research has been condacted. To illustrate how CBM is
used, consider the case of Francisco, a hypothetical student,
who developed sizeable math deficits over the course of
first and second grade, despite strong general education
programming and even though small-group fatoring was
implemented during the spring semester of second grade.
At the beginning of third grade, Francisco was identified for
remedial infervention. Mrs. LaBelle, the special education
teacher, set Francisco’s mathematics goal for year-end
performance as competent second-grade performance.
Relying on established methods, Mrs. LaBelle identified
enough CBM tests to assess Francisco’s performance
each weelk across the school year. Each test systematically
samples the second-grade mathematics corriculum in
the same way, is administered in the same way, and is of
equivalent difficiilty. Each weekly score is an indicator
of mathematics competence at the second grade. At the
beginning of the year, she expected Francisco’s performance
to be low but as she addressed the curriculum over the
school year, she expected his scores to gradually increase.
Because each progress-monitoring test coliected across the
school year is of equivalent difficulty, each week’s scores
can be graphed and directly compared to each other. Also,
a slope can be calculated on the series of scores. This slope
quantifies Francisco’s rate of improvement in terms of the
weekly increase in score. In addition, because each week’s
assessment samples the annual curriculum in the same way,
Mrs. LaBelle can derive a systematic analysis of which
skills Francisco has and has not mastered at any point in

time, and Mrs. LaBelle can look across time at a given skill -
to determine how Francisco’s mastery has changeg.

A large body of work indicates thai CBM Drogress
monitoring enhances teachers” capacity to plan Mathemaigg
programs and to effect stronger mathematics achievemens
among students with serious learning problems (Fuchg &
Fuchs, 1998). To inform instructional planning, teacherg
rely on the CBM graphed scores. Once the teacher satg the
year-end goal, the teacher draws the desired score op the
graph at the date corresponding to the end of the year The
teacher then draws a straight line connecting the student’s
beginning-of-the-year score with the year-end goal, This
line is calied the goal line. [t represents the approximate rate
of weekly improvement (or slope) teachers hope a student
will achieve. When a student’s trend line (ie., the slope
through the student’s actual scores) is steeper than the goal
line, the teacher increases the goal for the student’s year-
end performance. When a student’s trend line is flatter thay
the goal line, the teacher refies on her knowledgs aboyt the
student along with a CBM analysis of the student’s skills,
derived from the CBM data, to revise the instructional
program in an atfempt to boost the weekly rate of student
learning. Research shows that with CBM decision rules,
teachers design more varied instructional programs that
are more responsive to individua? needs (Fuchs, Fuchs, &
Hamlett, 1989b), that incorporate more ambitious student
goals (Fuchs, Fuchs, & Harnlett, 19892a), and that resuit in
stronger end-of-year scores on commercial, standardized
tests (e.g., Fuchs et al., 1989a; Fuchs, Fuchs, Hamlett, &
Stecker, 1991).

When Mrs. LaBelle assumed responsibility for
Francisco’s remediation program, she decided to use Pirate
Math. This entailed tutoring for 30 min per session, three
times per week. As Mrs. LaBelle began to implement this
validated protocol, she also began to administer the CBM
tests once each week for computation and once each week for
concepts/applications. Mrs. LaBelle calculated Francisco’s
baseline or beginning-of-the-year performance, the median
of his first three scores. Using CBM guidelines for goal
setting, she decided that Francisco’s year-end goal would
require a weekly increase of .5 digits for computation and a
weekly increase of .6 points for concepts/applications. So 25
weeks later, at the end of the school year, Francisco’s year-
end goal would be 18 digits correct on CBM computation
and 18 points correct on CBM concepts/applications. Ten
weeks later, Mrs. LaBelle compared lines of best fit through
Francisco’s actual CBM scores; calculated the slope of
his actual improvement; and compared the slope against
the desired rates of improvement (a weekly increase of .5
digits for computation and a weekly increase of .6 points
for concepts/applications).

The CBM data showed that Pirate Math, with jts focus
on number combinations and procedural calculations, was
producing strong growth for Francisco: His actual rate of
improvement was steeper than the goal line. By contrast,
Francisco was proving insufficiently naresponsive to Piraie
Math’s word-problem instruction, in which his actual rate of
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improvement was dramatically less steep than the goal line.
Therefore, Mrs. LaBelle modified the Pirate Math standard
p}_’O{OCOl. She considered Francisco’s performance during

wutoring sessions and reviewed his performance on the CBM .

concepts/applications story problems. She determined that
he was having difficulty differentiating problem types when
irrelevant information was included in problems and when
the missing information in problems occurred anywhere
but the final position in the number sentence. Based on this
analysis, Mrs. LaBelle added instruction on mixed problem
types, lengthened the problem-type sorting activity, and
added instructional time on irrelevant information and
deriving number sentences when the missing information
is in the first or second slot of the equation. As she
implemented this revision in the intervention protocol, Mrs.
LaBelle continued to monitor Francisco’s responsiveness
using weekly CBM. His learning improved; his siope grew
steeper than the goal line. Teachers can use CBM in this
formative, inductive, and recursive way to derive individual
insiructional programs that are effective for individual
students and increase the probability of improved student
outcomes.

Salient Issues Concerning MD and Its Remediation

In this section, we discuss three issues concerning MD
and it remediation. The first issue is whether ditficulty
with arithmetic represents a bottleneck for successful
performance with other mathematics skills and for students
with MD (e.g., Fleishner et al., 1982; Geary et al., 1987;
Goldman et al., 1988). The hypothesis is that, with a fixed
amount of attention, students with arithmetic deficits
allocate available resources for deriving answers to these
simple problems instead of focusing on the more complex
" mathematics into which the arithmetic is embedded
(cf. Ackerman, Anhalt, & Dykman, 1986; Goldman &
Pellegrino, 1987). If arithmetic represents a bottleneck
deficis, performance on more complex mathematics tasks
should improve simply as a function of remediating
arithmetic deficits, just as decoding intervention has been
shown to improve reading comprehension (Blachman et
al., 2004; Torgesen et al., 2001). An alternative perspective
exists in the mathematics education literature that challenges
the assumption of such vertical transfer, whereby mastery of
simple skills facilitates acquisition of more complex skills
(Gagnre, 1968; Resnick & Resnick, 1992).

Few researchers have examined whether remediation of
arithmetic deficits transfers to more complex math skills.
Research conducted by Fuchs et al., which systematically
assesses this issue, suggests that transfer may occur to
some but not all aspects of mathematical performance.
In some studies {Fuchs, Powell, Seethaler, et al,, 2009;
Fuchs, Powell, Seethaler, et al., 2010}, we found support
for this “bottleneck™ hypothesis in the transfer we observed
from arithmetic remediation fo procedural calculation

outcomes. And evidence for transfer was not entirely

consistent (see Tuchs, Powell, et al., 2008; Powell et al.,

2009). Moreover, we found no evidence in any study
to support the bottleneck hypothesis on word-problem
outcomes. With arithmetic improvement (but in the absence

.of word-problem tutoring), students with MD evidenced

no improvement in solving word problems. This suggests
that the source of their difficulty is not diverting attention
from the complex mathematics to the arithmetic embedded
in those problems, but rather failing to comprehend the
relations among the numbers embedded in the narratives or
to process the language in those stories adequately. Thus,
arithmetic does not appear to be the bottleneck for word-
problem performance. Instead, MD may represent a more
complicated pattern of difficulty, implicating language as
has been suggested elsewhere (e.g., Fuchs et al,, 2003,
2006). Given these confradictory findings about ransfer,
in which some evidence supports transfer from arithmetic
remediation to procedural calculations but no study has
shown transfer to word problems, future work should
continue to explore this issue.

The second issue concerns subtyping of MD. Because a
key deficit associated with reading difficuity is phonological
processing (Bruck, 1992) and because phonological
processing deficits are linked to difficulty with antomatic
retrieval of math facts (Fuchs et al., 2003), students with
concurrent difficulty in mathematics and reading (MDRD)
should experience greater difficulty with arithmetic
compared to students who experience difficulty only with
mathematics (MD-only; Geary, 1993). Some research
suggests that compared to students with MDRD, those
with MD-only use more efficient counting procedures
to solve arithmetic problems (Geary, Hamson, & Hoard,
2000; JTordan & Hanich, 2000) with faster retrieval times
(Andersson & Lyxell, 2007; Hanich, Jordan, Kaplan, &
Dick, 2001; Jordan & Montani, 1997) but with comparable
accuracy (Cirino et al,, 2007). However, the fiterature is not
consistent (e.g., Micallef & Prior, 2004; Reikeras, 2006},
and most studies have employed a cross-sectional causal-
comparative design. '

An alternative approach is experimental, whereby
students are stratified as MDRD versus MD-only and then
randomly assigned to treatment or control conditions.
The goal is to determine whether the subtypes respond
differentially to intervention. This design offers the basis
for stronger, causal inferences about the tenability of the
subtyping scheme. In each of four studies, we adopted this
approach. We found limited support for the MD-only versus
MBDBRD framework for subtyping MD. The only evidence
we found of differential responsiveness was Powell et
al. (2009). MD-only students responded nicely to both
arithmetic remediation conditions (practice remediation
and conceptual remediation), with effect sizes for both
remediation conditions around one standard deviation. By
contrast, MDRI students proved unresponsive, with effect
sizes near zero for both remediations. Itis difficult to explain
why MDRD students were differentially unresponsive in
Powell et al., but not in the other three studies. In fact, the
Powelt et al. practice remediation was identical to the Fuchs
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et al. (2008) drill and practice remediation {which proved
comparabiy efficacious for students with MD-only and
MDRD). Moreover, the Fuchs, Powell, Seethaler, Cirino,
Fletcher, Fuchs, Hamlett, and Zumeta (2009} counting
strategies remediation was designed to circumvent the need
for automatic retrieval, the hypothesized bottleneck for
MDRD students. For that reason, we had hypothesized that
the MDRD students might prove differentially responsive to
the counting-up sirategies than to the practice remediation;
however, the response to both conditions was similar.

One explanation for the differential unresponsiveness in
Powell et al. (2009) may inveolve the nature of the sample.
Although students were screened in the same way for
inclusion in all four siudies, 1Q for the Powell et al. {2009)
MDRD sample scored, on average, 13 standard score points
lower relative to their MD—Only counterparts; by contrast,
the 1QQ difference between MD-only and MDRD in each of
the other studies was 7 points. When we incorporated T(Q) as
a covariate in the Powell et al. analyses, findings remained
similar. Even so, the lower 1Q may explain the differentially
poor response in Powell et al. or a third variable may explain
the Powell et al. findings of MDRD students’ low IQ) scores
as well as their peor response. Future work should explore
the demographic and child characteristics associated with
poor response to arithmetic rethediation generally and in
the context of the MDRD versss MD subtyping framework.

 Such research may provide important information about
what drives arithmetic deficits and the nature of MD. It may
also prove useful for guiding future intervention work. In
the meantime, our line of experimental studies does not lend
support to the MDRID/MD subtyping framework.

Our final issue concerns the treatment of MD. As already
noted, despite the statistically significant and practically
important effects associated with some remediation efforts,
practitioners must always be mindful of individual response.

That is, validated protocols will not work for all students,

and schools therefore need to systematically monitor the
effects of those validated remediations on individuals’
fearning and, when a validated protocol proves insufficiently
effective, use the resulting data to tailor individualized
programs. But the question remains: Once we determine,
via ongoing progress monitoring, that a standard, validated
remediation is not working, how might individual tailoring
proceed?

One possibility is a skills-based diagnostic-prescriptive
approach. For nonresponders, at the beginning of
remediation, assessment might be conducted to determine
the strategies with which a student derives answers to
arithmetic problems (e.g., Siegler & Shrager, 1984),
Then, using a menu of remediations developed to promote
automatic retrieval with drill and practice versus to help
students become fluent with counting strategies versus
to build conceptual knowledge underlying math facts,
the tutor might match the remediation approach to the
student’s profile of strategies. For example, if the assessment
indicates that Wendy primarily relies on the immature total
counting strategy to derive answers, the counting strategies

. automatic retrieval. For Robert, the tutor might intensify the

remediation, with its focus on the more efficient Countip

strategies, might prove useful. Once Wendy Consisten]y
applies the min counfing strategy with aceuracy apg
fluency, the tutor might begin implementing conceptyg)
lessons. After decomposition sirategies associated wigy,
conceptual lessons are firm, the tutor might introdyge
intensive computerized practice. By contrast, let’s say that
Robert’s strategy assessment reveals strong understanding
of back-up (min counting as well as decompositimﬁ
strategies, but he nevertheless demonstrates an absence of

repeated flash card activity, whereby students comect errgrg
using back-up strategies they have mastered efficiently,
trying to beat previous scores (as in repeated reading)
with correct and fluent responding. Furthermore, the tutor
might systematically mix the repeated flash card activity
with computerized drill and practice, requiring Robert to
apply his back-up strategies. And so on. A variation on
this individualized approach was suggested by Goldman
et al. (1988) when they documented clusters of stndents
with different strategy patterns. Yet, to our knowledge, no
research on its efficacy has been conducted. Experimental
studies are needed to contrast sech a diagnostic-prescriptive
remediation against a standard protocol.
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