Math 25 Worksheet 15 - Taylor Poly's 2

- 1. Find the Taylor polynomial of degree 4 approximating the function $f(x) = e^{2x}$ for x near 0. (We work "from scratch" as would have made sense when
 - this worksheet came out.)

$$\frac{n}{0} \frac{f'''(x)}{e^{2x}} \frac{at \ o}{1} \qquad S_0 P_4(x) \\
= 1 + 2x + \frac{2^2 x^2}{2!} + \frac{2^3 x^3}{3!} + \frac{2^4 x^4}{4!} \\
2 + 2^2 e^{2x} + 2^3 \\
3 + 2^4 e^{2x} + 2^4$$

2. How does your polynomial above relate to the Taylor polynomial of degree 4 for ϵ^r ?

We see that
$$P_4(x)$$
 for e^{ax} is what we get when we replace x with ax in 4^{th} degree Taylor poly for e^x :

 $1 + ax + \frac{(2x)^2}{2!} + \frac{(2x)^3}{3!} + \frac{(2x)^4}{4!}$

3. Find the Taylor polynomial of degree 4 approximating the function f(x) = cos(3x) for x near 0. Use the short cut you observed in the previous problem?

We know
$$P_4(x)$$
 for $\cos x$ is $1 - \frac{x^2}{2!} + \frac{x^4}{4!}$
So $P_4(x)$ for $\cos(3x)$ is $1 - \frac{(3x)^2}{2!} + \frac{(3x)^4}{4!}$

4. Use the Taylor approximation for x near 0, $sinx \approx x - \frac{r^3}{3!}$, to explain why $\lim_{r\to 0} \frac{sinx}{r} = 1$. (This is #29 from §10.1.)

We have
$$\sin x \times x - \frac{x^3}{3!}$$
 for x near 0 .

So $\frac{x - \frac{x^3}{3!}}{x} = 1 - \frac{x^2}{3!}$.

Taking limit as $x \to 0$,

the approximation $\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} |-\frac{x^2}{3!}| = 1$,

becomes exact, so