13. E. M. De Robertis, J. Larrain, M. Oelgeschlager, O. Wessely, Nat. Rev. Genet. 1, 171 (2000).
14. H. C. Korswagen, Bioessays 24, 801 (2002).
15. M. T. Veeman, J. D. Axelrod, R. T. Moon, Dev. Cell 5, 367 (2003).
16. C. Niehrs, Nat. Rev. Genet. 5, 425 (2004).
17. C. Kiecker, C. Niehrs, Development 128, 4189 (2001).
18. R. Harland, J. Gerhart, Annu. Rev. Cell Dev. Biol. 13, 611 (1997).
19. J. K. Yu et al., Nature 445, 613 (2007).
20. A. Kusserow et al., Nature 433, 156 (2005).
21. M. Broun, L. Gee, B. Reinhardt, H. R. Bode, Development 132, 2907 (2005).
22. M. A. Hilliard, C. I. Bargmann, Dev. Cell 10, 379 (2006).
23. H. Takeshita, H. Sawa, Genes Dev. 19, 1743 (2005).
24. C. Nusslein-Volhard, E. Wieschaus, Nature 287, 795 (1980).
25. K. Miyawaki et al., Mech. Dev. 121, 119 (2004).
26. S. Q. Schneider, B. Bowerman, Dev. Cell 13, 73 (2007).
27. H. V. Brøndsted, Planarian Regeneration (Pergamon Press, London, ed. 1, 1969), pp. 276.
28. We thank the Reddien lab, H. Sive, and A. Hochwagen for discussions and K. Agata for antibodies. This work was supported by American Cancer Society RSG-07-180-01DDC and awards to P.W.R. from the Rita Allen Foundation, the Searle Foundation, and the Smith

Family Foundation, and by American Cancer Society postdoctoral fellowship PF-07-046-01-DDC to C.P.P. The authors declare no competing financial interests.

Supporting Online Material

www.sciencemag.org/cgi/content/ful//1149943/DC1
Materials and Methods
Figs. S1 to S4
References
30 August 2007; accepted 27 November 2007
Published online 6 December 2007;
10.1126/science. 1149943

Include this information when citing this paper.

Natural Genetic Variation in Lycopene Epsilon Cyclase Tapped for Maize Biofortification

Carlos E. Harjes, ${ }^{1 *}$ Torbert R. Rocheford, ${ }^{2} \dagger$ Ling Bai, ${ }^{3}$ Thomas P. Brutnell, ${ }^{3}$ Catherine Bermudez Kandianis, ${ }^{2}$ Stephen G. Sowinski, ${ }^{4}$ Ann E. Stapleton, ${ }^{5}$ Ratnakar Vallabhaneni, ${ }^{6,7}$ Mark Williams, ${ }^{4}$ Eleanore T. Wurtzel, ${ }^{6,7}$
Jianbing Yan, ${ }^{8}$ Edward S. Buckler ${ }^{1,9,10} \dagger$

Abstract

Dietary vitamin A deficiency causes eye disease in 40 million children each year and places 140 to 250 million at risk for health disorders. Many children in sub-Saharan Africa subsist on maize-based diets. Maize displays considerable natural variation for carotenoid composition, including vitamin A precursors α-carotene, β-carotene, and β-cryptoxanthin. Through association analysis, linkage mapping, expression analysis, and mutagenesis, we show that variation at the lycopene epsilon cyclase (lcyE) locus alters flux down α-carotene versus β-carotene branches of the carotenoid pathway. Four natural IcyE polymorphisms explained 58\% of the variation in these two branches and a threefold difference in provitamin A compounds. Selection of favorable lcyE alleles with inexpensive molecular markers will now enable developing-country breeders to more effectively produce maize grain with higher provitamin A levels.

Maize is the dominant subsistence crop in much of sub-Saharan Africa and the Americas, where between 17 and 30% of children under age of 5 are vitamin Adeficient. This results in xerophthalmia (progressive blindness), increased infant morbidity and mortality, and depressed immunological responses (1). Vitamin A deficiency starts with inadequate provitamin A or vitamin A content or bioavailability

[^0]in foods and is exacerbated by disease-induced malabsorption.

Diet diversification, food fortification, and supplementation (2-4) have all been used to combat dietary micronutrient deficiencies. Ideally, all children would have access to a varied diet rich in fruits and vegetables, but diet diversification is often limited by crop seasonality, expense, and low bioavailability of green leafy plant carotenoids (5, 6). Poor infrastructure in developing countries has limited widespread use of direct vitamin supplementation. Perhaps the most feasible approach to eradicating death and disease caused by dietary deficiencies is biofortification, a process by which staple crops are purposefully bred for higher nutritional density $(7,8)$. Although biofortified foods can potentially be an inexpensive, locally adaptable, and longterm solution to diet deficiencies, cultural preferences may limit their acceptance. This may be particularly true for those crops where transgenics are the only alternative to boost provitamin A content, given limited acceptance of genetically modified organisms in developing countries.

Carotenoids are derived from the isoprenoid biosynthetic pathway and are precursors of the plant hormone abscisic acid and of other apo-
carotenoids (9). The first committed step of this pathway [as recently revised (10)] is formation of phytoene from geranylgeranyl diphosphate by phytoene synthase (yl/psyl) (Fig. 1) (11). Recent studies in maize suggest that the psyl locus has been the target of a selective sweep following selection for endosperm-accumulating carotenoids and shift from white to yellow kernels (12). The first branch point of this pathway (Fig. 1) occurs at cyclization of lycopene where action of lycopene beta cyclase (LCYB) at both ends of linear lycopene produces a molecule with two β rings. Alternatively, the coaction of LCYB and lycopene epsilon cyclase (LCYE) generates a β, ε-carotene that is a precursor to lutein (13). Relative activities of LCYB and LCYE are hypothesized to regulate the proportion of carotenes directed to each branch of this pathway (13-15). Indeed, transgenic manipulations of LCYE expression in Arabidopsis, potato, and Brassica increase the pool of β ring-containing carotenes and xanthophylls (13, 16-18).

Maize exhibits considerable natural variation for kernel carotenoids, with some lines accumulating as much as $66 \mu \mathrm{~g} / \mathrm{g}$. The pre-

Fig. 1. Simplified carotenoid biosynthetic pathway in plants (29). Enzymatic reactions are represented by arrows, dashed lines represent multiple enzymatic steps. Substrates in red were evaluated in this study. Compounds: GGPP, geranylgeranyl diphosphate; ABA, abscisic acid. Enzymes: PSY, phytoene synthase; PDS, phytoene desaturase; Z-ISO, 15-cis zetacarotene isomerase; ZDS, zetacarotene desaturase; CRTISO, carotene isomerase; HYD, carotene hydroxylase enzymes, which include ε and β-ring hydroxylases.
dominant carotenoids in maize kernels, in decreasing order of concentration, are lutein, zeaxanthin, β-carotene, β-cryptoxanthin, and α carotene. β-Carotene contains two provitamin A structures (two nonhydroxylated β-ionone rings) and β-cryptoxanthin and α-carotene one each (single nonhydroxylated β-ionone ring). Among lines included in our diverse maize panel, β carotene levels reached $13.6 \mu \mathrm{~g} / \mathrm{g}$. However, most yellow maize grown and consumed throughout the world has only 0.5 to $1.5 \mu \mathrm{~g} / \mathrm{g}$ β-carotene. Comparisons between β-carotene and total carotenoids with grain color (scaled according to shade of yellow) revealed poor correlations with low R^{2} values (Fig. 2), which
indicated that marker-assisted selection (MAS) may prove much more efficient than selection based on color alone.

To dissect the phenotypic diversity, we used an association-mapping approach that exploits the genetic diversity of maize to provide resolution within 2000 base pairs (bp) (19-21). In the context of plant breeding, this has the added advantage of identifying the most favorable allele within a diverse genetic background, which provides the necessary genotypic information to facilitate the design of efficient maize introgression and selection schemes throughout the world. We complemented the association mapping with linkage mapping to evaluate the

Fig. 2. Grain color and carotenoid content. The graphs depict the low correlation between visual grain color and total carotenoids, β-carotene, and β-cryptoxanthin in diverse inbreds. In these kernels, the shade of yellow ranges from white (score of 1) to dark orange (score of 6). White kernels were excluded from the analysis. The difficulty in visual selection for β-carotene content is further exemplified by the images on the left, where the yellow maize below has higher β-carotene than the orange variety above. These correlations are across the diverse panel of 228 maize inbreds; correlations for grain color and total carotenoids are higher when scored across segregating populations and narrow ranges of germ plasm, but correlations for β-carotene and β-cryptoxanthin remain low.

Fig. 3. Schematic diagram of the maize lcyE. Putative transcription start sites are depicted with orange arrow, translated exons as black squares, and the sampled regions as gray boxes. Polymorphisms that significantly associated with changes in flux between the lutein and zeaxanthin branches of the pathway are labeled with asterisks. The 5^{\prime} transposable element insertion(s) are represented by the white triangles. Positions relative to the sequence alignment are indicated numerically above the polymorphisms.
effects in a genetically less complex background and with a mutagenesis program to isolate novel allelic variation within an elite near-isogenic background.

To evaluate functional diversity (Fig. 1), eight candidate genes representing select members of gene families encoding biosynthetic enzymes of the carotenoid pathway were sampled across a diverse panel of 288 maize lines, of which 204 were yellow. Subsets of yellow lines were grown in four different years and surveyed for wholekernel carotenoids by high-performance liquid chromatography (HPLC). The yellow lines averaged $23 \mu \mathrm{~g} / \mathrm{g}$ for total carotenoids (range 5.5 to $66.0 \mu \mathrm{~g} / \mathrm{g}$) and $1.7 \mu \mathrm{~g} / \mathrm{g}$ for β-carotene (range 0.06 to $13.6 \mu \mathrm{~g} / \mathrm{g}$).

For association analysis, we used a mixedmodel approach that controlled for complex population and pedigree relationships (22). Among our current sampling of candidate genes, lycopene epsilon cyclase (lcyE) (14) had the largest effect on partitioning the two branches of carotenoids and, consequently, on β-carotene and β-cryptoxanthin content. In maize, the single-copy lcyE gene consists of 10 exons spanning 3640 bp (Fig. 3). After initial association and screening for polymorphisms in key haplotypes, four regions were selected and scored across the entire panel. On the basis of the position of LCYE in the biochemical pathway, we predicted that the ratio of the sum of kernel carotenoids from each pathway branch would form the strongest association. Indeed, this was confirmed (Table 1), with the strength of the association confirming that $l c y E$ plays a key role in controlling this ratio. Correspondingly, levels of predominant provitamin A compounds β carotene and β-cryptoxanthin were also highly associated with $l c y E$.

Subsequent haplotype analysis revealed several probable causative polymorphisms for the ratio of α - and β-carotene branches for the 2003 field season (table S1). A large promoter indel and an amino acid substitution in exon 1 explain most of the variation $\left(R^{2}=36 \% ; n=135 ; P=\right.$ 1.27×10^{-12}) with a 5.2 -fold effect. A second indel in the 3^{\prime} UTR also has a significant 3.3 -fold effect and contributes to variation not explained by the promoter polymorphism (type III SS; $P=1.9 \times 10^{-4}$). The fourth significant polymorphism at position 2238 in intron 4 was associated with a 2.5 -fold effect (type III SS; $P=0.0003$). The overall, four-term model explains 58% of the variation $\left(P=9.2 \times 10^{-17}\right)$. These significant polymorphisms exhibit some linkage disequilibrium (LD), and only nine haplotypic classes exist in our sample, which limits full differentiation of the effects of each polymorphism. Overall, there is a ninefold difference between two of the more differentiated haplotype classes, and sixfold between two more common haplotypes (table S2). There was a threefold increase in the proportion of β-carotene and β cryptoxanthin between the common haplotypes. Verification of these results was provided by
significant associations in subsequent field seasons (Table 1).

Expression analysis indicated that $l c y E$ is preferentially expressed in the endosperm relative to the embryo (fig. S1). Expression profiling of kernels at 15 and 20 days after pollination (DAP) indicated expression levels correlated well with the ratio of carotenoids from each pathway branch, explaining 70 to 76% of the variance. Lines with transposon insertions near the start site had much lower expression levels [in 15 DAP and 20 DAP lower by a factor of 3.7 and 13 , respectively (fig. S2)]. The 3^{\prime} indel may also have expression effects, but our statistical tests lacked the power to confirm this hypothesis. A quantitative trait locus (QTL) experiment that examined segregation of B73-Mo17 alleles in leaves found significant variation in the cis-regulation of $l c y E$ expression, along with several other regions that also contribute to expression level control of $l c y E$ (fig. S3).

In a previous study, three major QTL were identified for accumulation of carotenoids in maize (23). Two of these QTL colocalized with $y 1$ and zeta carotene desaturase $(z d s)$; the third QTL mapped to a region without a candidate gene. We mapped $l c y E$ to chromosome 8 bin 5, near marker bnlg1599, and it colocalized with this previously undetermined QTL. This QTL showed significant effects for modification of the ratio of α to β branch carotenoids [logarithm of the odds ratio for linkage (or lod) score of $34.05 ; R^{2} 54.4 \%$] and explained 31.7% of the variation for lutein (lod 16.5). The magnitude of effects was not as large as in association or mutagenesis analysis. However, this biparental QTL population only segregated for the amino substitution (at codon 216) and a modest promoter polymorphism and does not segregate for the 3^{\prime} polymorphism. Notably, this QTL was not significant for total carotenoids, which further supports the conclusion that variation within $l c y E$ gene underlies this QTL for carotenoid composition.

To confirm association and QTL results, mutagenesis induced by ethane methyl sulfonate (EMS) was conducted to isolate additional alleles of $l c y E$. Two M_{2} ears of inbred Qx 47 segregated for a distinct change in endosperm color from yellow to orange, with orange recessive to yellow (these color changes were apparent in the inbred isogenic background, but not in diverse breeding materials). HPLC analysis of orange and yellow kernels confirmed a shift in the zeaxanthin:lutein ratio in the direction of zeaxanthin. This orange endosperm mutation was backcrossed into the standard genetic inbred line B73, and $l c y E$ was tested as a candidate gene, which revealed that the $\mathrm{Qx47}$ $l c y E$ haplotype cosegregates with orange endosperm and ratio of α-carotene versus β-carotene branch carotenoids (fig. S4).

The most favorable haplotype for higher β carotene branch carotenoids included both the large promoter insertion and $3^{\prime} 8$-bp insertion. In the diverse panel we tested, this haplotype occurs in 5% of temperate inbreds and 16% of tropical inbreds. MAS at this locus should be effective for several reasons: (i) The most favorable haplotype is found with at least modest frequency in different germ plasm sources and thus breeders can select donors from their relatively more adapted sources. (ii) The favorable haplotype has a large effect. (iii) Visual selection is ineffective for differentiating carotenoid composition and selecting provitamin A compounds. (iv) In comparison with HPLC analysis of carotenoids, polymerase chain reaction (PCR) scoring of the $l c y E$ locus is much less expensive (costing perhaps $1 / 1000$ th that of HPLC) and more accessible to developing countries with greatest need for provitamin A.

An approach that empowers local breeder involvement through inexpensive visual selection for darker yellow to orange kernels to enhance flux into carotenoid pathway, and also incorporates MAS for $l c y E$, should result in
increased levels of provitamin A compounds. To expedite creation of improved germ plasm globally, we provide information on PCR-based markers (fig. S5). Donor inbreds and improved breeding lines derived at the International Maize and Wheat Improvement Center (CIMMYT) from synthetics of diverse panel inbreds with higher β-carotene are available by contacting T. R.R. This will facilitate selection worldwide of the most favorable $l c y E$ alleles, which we have begun in our program. We are screening tropical breeding germ plasm collections in collaboration with CIMMYT.

To date, MAS for natural variation has been limited by resolution and scope (germ plasm diversity). Alleles have generally been characterized in the limited genetic background and resolution of biparental QTL studies, leaving in question their relevance to broader germ plasm (24), particularly for germ plasm outside of the temperate United States. As a result, the primary use for MAS is backcross breeding of transgenic traits. In contrast, the association mapping approach used here allows for rapid generation of selectable markers based on performance of diverse germ plasm. This provides markers more relevant in a broad genetic background, and that enables breeders to search for favorable alleles in their locally adapted germ plasm sources.

In ongoing studies, we are attempting to identify alleles for other genes in the pathway that increase total carotenoids and that slow the conversion of β-carotene to β-cryptoxanthin and zeaxanthin, to exploit more fully the natural genetic variation potential in provitamin A biofortification of maize. These results will then be further incorporated in breeding efforts to create a healthier maize crop for the world's poorest people.

Although the genetic results and strategy presented here are encouraging, they need to be placed in context as part of an overall biofortification effort encompassing breeding infrastructure, seed distribution, societal acceptance,

Table 1. IcyE associations across seasons. Association results for significant polymorphisms identified in the four regions sampled along the IcyE gene. Each polymorphism is labeled numerically by its position on the alignment relative to the exon 1 start codon. Followed by the favorable allele (bold)/unfavorable allele at the site. An initial scan for association using both β-carotene and the ratio of the two pathway branches was
conducted using the mixed model incorporating population structure and kinship. Subsequently a simpler general linear model (GLM) was used to evaluate data sets from additional years, including population structure (Q), given the oligogenic behavior of the trait the change in flux estimates for 2003 do not include Q. Avg., average; n.c., nonconvergence; n.s., not significant.

	IcyE association (P), mixed model of		IcyE association as a ratio across environments (GLM) (P)				Fold change in flux
	β-Carotene/all	Ratio of branches					
Environment (year)	(2003)	(2003)	(2002)	(2003)	(2004)	(2005)	(2003)
Avg. observation no.	(157)	(154)	(44)	(156)	(154)	(156)	
Polymorphic site							
5' TE 1+4/2/3	5.42×10^{-4}	3.96×10^{-11}	0.024	8.05×10^{-11}	0.008	8.61×10^{-9}	6.5
216 G/T	n.c.	1.35×10^{-10}	0.059	1.24×10^{-10}	0.003	2.93×10^{-10}	2.8
2238 G / T	1.22×10^{-4}	1.69×10^{-9}	0.008	2.12×10^{-10}	0.023	1.08×10^{-9}	2.7
2312 A / T	1.70×10^{-3}	n.c.	n.s.	6.84×10^{-4}	0.026	0.005	2.9
4184 G / A	3.06×10^{-4}	n.c.	8.87×10^{-4}	2.23×10^{-10}	0.019	1.13×10^{-8}	2.6
4315 C/G	1.84×10^{-4}	7.01×10^{-10}	0.012	3.07×10^{-9}	5.75×10^{-4}	6.79×10^{-7}	2.6
3'Indel 8/0	4.80×10^{-3}	2.75×10^{-9}	n.s.	1.46×10^{-8}	8.97×10^{-4}	4.13×10^{-6}	3.5

dietary habits, and nutritional impact. Information now available on some of these issues is encouraging. Results from an animal model for human vitamin A metabolism indicated vitamin A activity of provitamin A in orange maize was greater than assumed by a factor of about four (25). A successful intervention to introduce β -carotene-rich, orange sweet potato in Mozambique, where only white sweet potato was previously cultivated, suggests that orange-colored staple foods can be acceptable, and their regular consumption results in improved vitamin A status (26). Related follow-up acceptance studies of yellow and orange maize in Mozambique and Zimbabwe are in progress with initial results encouraging (27). The dietary habits of many Africans, in which maize is consumed for all three meals a day, indicates that maize is a good target for biofortification (28). The recent positive nutritional and acceptance results will need to be coordinated with comprehensive breeding and seed distribution efforts to realize the potential of provitamin A-biofortified maize, as, for example, is coordinated by the HarvestPlus Global Challenge Program.

References and Notes

1. B. A. Underwood, J. Nutr. 134, 231 S (2004). 2. J. O. Mora, J. Nutr. 133, 2990 (2003).
2. C. E. West, Nutr. Rev. 58, 341 (2000).
3. O. Dary, J. O. Mora, J. Nutr. 132, 29275 (2002).
4. C. E. West, A. Eilander, M. van Lieshout, J. Nutr. 132, 29205 (2002).
5. M. van Lieshout, S. de Pee, Am. J. Clin. Nutr. 81, 943 (2005).
6. R. D. Graham, R. M. Welch, H. E. Bouis, Adv. Agron. 70, 77 (2001).
7. P. D. Fraser, P. M. Bramley, Prog. Lipid Res. 43, 228 (2004).
8. D. DellaPenna, B. J. Pogson, Annu. Rev. Plant Biol. 57, 711 (2006).
9. F. Li, C. Murillo, E. T. Wurtzel, Plant Physiol. 144, 1181 (2007).
10. B. Buckner, P. S. Miguel, D. Janick-Buckner, J. L. Bennetzen, Genetics 143, 479 (1996).
11. K. Palaisa, M. Morgante, S. Tingey, A. Rafalski, Proc. Natl. Acad. Sci. U.S.A. 101, 9885 (2004).
12. B. Pogson, K. A. McDonald, M. Truong, G. Britton, D. DellaPenna, Plant Cell 8, 1627 (1996).
13. F. X. Cunningham Jr. et al., Plant Cell 8, 1613 (1996).
14. I. Pecker, R. Gabbay, F. X. Cunningham Jr., J. Hirschberg, Plant Mol. Biol. 30, 807 (1996).
15. B. Yu, D. Lydiate, L. Young, U. Schäfer, A. Hannoufa, Transgenic Res. 10.1007/s11248 (2007).
16. G. Diretto et al., BMC Plant Biol. 6, 13 (2006).
17. B. J. Pogson, H. M. Rissler, Philos. Trans. R. Soc. London B Biol. Sci. 355, 1395 (2000).
18. S. A. Flint-Garcia et al., Plant J. 44, 1054 (2005).
19. D. L. Remington et al., Proc. Natl. Acad. Sci. U.S.A. 98, 11479 (2001).
20. Materials and methods are available as supporting material on Science Online.
21. J. Yu et al., Nat. Genet. 38, 203 (2006).
22. J. C. Wong, R. J. Lambert, E. T. Wurtzel, T. R. Rocheford, Theor. Appl. Genet. 108, 349 (2004).
23. M. J. Asíns, Plant Breed. Rev. 121, 281 (2002).
24. J. A. Howe, S. A. Tanumihardjo, J. Nutr. 136, 2562 (2006).
25. J. W. Low et al., J. Nutr. 137, 1320 (2007).
26. R. A. Stevens, A. Winter-Nelson, Food Policy, in press.
27. S. Li, F. A. K. Tayie, M. F. Young, T. Rocheford, W. S. White, J. Agric. Food Chem. 55, 10744 (2007).
28. P. D. Matthews, E. T. Wurtzel, in Food Colorants: Chemical and Functional Properties, C. Socaciu, Ed. (CRC Press, Boca Raton, FL, 2007), pp. 347-398.
29. We thank S. Islam, C. Paul, W. Liu, and W. White for running HPLC on samples; H . Yates for support of molecular genetics; and N . Stevens for technical editing of the manuscript. This work was supported by NSF DBI-0321467 (to E.S.B.), U.S. Agency for International Development (to T.R.R.), HarvestPlus (to T.R.R.), NIH (S06-GM08225 to E.T.W.), Professional Staff Congress-CUNY research award (to E.T.W.), New York State (to E.T.W.), NSF DBI-0604923 (to T.R.R), TRIAD Foundation (L.B. and T.P.B.), U.S. Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES), National Research Initiative grant 2003-00745 (to A.E.S.), and USDA-Agricultural Research Service (to E.S.B.). Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA.

Supporting Online Material

www.sciencemag.org/cgi/content/full/319/5861/330/DC1
Materials and Methods
Figs. S1 to S9
Tables S1 to S5
References
10 September 2007; accepted 11 December 2007 10.1126/science. 1150255

Dual Positive and Negative Regulation of Wingless Signaling by Adenomatous Polyposis Coli

Carter M. Takacs, Jason R. Baird, Edward G. Hughes, Sierra S. Kent,
Hassina Benchabane, Raehum Paik, Yashi Ahmed*

The evolutionarily conserved Wnt/Wingless signal transduction pathway directs cell proliferation, cell fate, and cell death during development in metazoans and is inappropriately activated in several types of cancer. The majority of colorectal carcinomas contain truncating mutations in the adenomatous polyposis coli (APC) tumor suppressor, a negative regulator of Wnt/Wingless signaling. Here, we demonstrate that Drosophila Apc homologs also have an activating role in both physiological and ectopic Wingless signaling. The Apc amino terminus is important for its activating function, whereas the β-catenin binding sites are dispensable. Apc likely promotes Wingless transduction through down-regulation of Axin, a negative regulator of Wingless signaling. Given the evolutionary conservation of APC in Wnt signal transduction, an activating role may also be present in vertebrates with relevance to development and cancer.

The Wnt/Wingless (Wg) secreted proteins activate a signal transduction cascade that directs growth and differentiation in many tissues during animal development [reviewed in (1)]. Activation of target genes in response to the Wnt/Wg signal is dependent on the transcriptional activator β-catenin/Armadillo (Arm). In the absence of Wnt, four factors-APC, Axin, gly-

[^1]cogen synthase kinase-3/Zeste white 3 , and casein kinase 1-target β-catenin for phosphorylation and subsequent proteasomal degradation (2-8). Axin acts as a scaffold to facilitate β-catenin phosphorylation by binding β-catenin, APC, and the two kinases. Wnt-dependent down-regulation of Axin is important for β-catenin-mediated transcriptional activation (9-11). Mutational inactivation of negative regulatory components in the pathway and the resultant inappropriate activation of Wnt signaling is associated with the development of several types of cancer. The majority of colorectal adenomas and carcinomas
contain mutations that eliminate the carboxyterminal half of APC (1).

The Wnt/Wg signaling pathway shows considerable conservation among metazoans. Two APC homologs exist in humans, mice, and fruit flies, and the negative regulatory role of APC in Wnt signaling is conserved from flies to mammals (12-15). Drosophila Apc1 and Apc2 are ubiquitously expressed, and in most cells act redundantly to negatively regulate Wg signaling $(16,17)$. However, in retinal photoreceptors, Apc2 activity is low enough that inactivation of Apcl singly suffices to constitutively activate Wg signaling (13, 16). In response, all photoreceptors undergo apoptosis (13) (Fig. 1, A and B) and before their deaths some photoreceptors adopt an aberrant cell fate, as indicated by ectopic expression of homothorax and Rhodopsin $3(18,19)$ (fig. S1, A to F).

To identify genes that promote Wg signaling, we performed a genetic screen for suppressors of photoreceptor apoptosis in the $A p c l^{Q 8}$ null mutant (Methods). We found that apoptosis is suppressed by null and hypomorphic $A p c 2$ alleles (Fig. 1C; fig. S2, A to C; fig. S3, A to H; and table S1). Ectopic expression of homothorax and Rhodopsin 3 is also suppressed, indicating that suppression of Wg signaling is not restricted to apoptosis (fig. S1, G to L, and fig. S4, A to F). Further, ectopic Wg signaling resulting from Arm overexpression is also partially suppressed by reduction of Apc 2 (fig. S 5 , A to C). These data indicate that in addition to its well-established negative regulatory role, Apc2 also has an activating role in ectopic Wg signaling.

Supporting Online Material for

Natural Genetic Variation in Lycopene Epsilon Cyclase Tapped for Maize Biofortification

Carlos E. Harjes, Torbert R. Rocheford,* Ling Bai, Thomas P. Brutnell, Catherine Bermudez Kandianis, Stephen G. Sowinski, Ann E. Stapleton, Ratnakar Vallabhaneni, Mark Williams, Eleanore T. Wurtzel, Jianbing Yan, Edward S. Buckler*
*To whom correspondence should be addressed. E-mail: esb33@cornell.edu (E.S.B); trochefo@uiuc.edu (T.R.R.)

Published 18 January 2008, Science 319, 330 (2008)
DOI: 10.1126/science. 1150255

This PDF file includes

Materials and Methods
Figs. S1 to S8
Tables S1 to S5
References

Supporting Online Material

MATERIALS AND METHODS

Germplasm Evaluation: A diverse association panel of 282 lines(S1) was phenotyped using HPLC analysis for carotenoid content and genotyped using SSR and SNP markers. The inbreds were grown in one-row plots in a randomized complete block design in Champaign-Urbana, Illinois during the summers of 2002, 2003, 2004, and 2005. HPLC analysis was performed on balanced bulks of a few to several self-pollinated ears of seed from each plot.

Carotenoid Quantification: Quantification of carotenoids was accomplished by standard regression with external standards (S2, 3). Evaluations were done on dry kernels, and values are quantified relative dry weight. The HPLC system consisted of a Waters Alliance 2690 separation module (system includes solvent delivery system, inline degasser, column heater, and sample cooler) attached to a Waters 996 Photodiode Array detector (PDA) and this system was managed by Waters Millennium 2001 (v 3.2). The column used for quantification was a reverse phase YMC carotenoid C30 column ($5 \mu \mathrm{~m}, 4.6 \times 100 \mathrm{~mm}$) connected to a YMC C30 filter insert that acted as a guard column. The mobile phase was Acetonitrile, methanol, methylene chloride ($75: 20: 5 \mathrm{v} / \mathrm{v} / \mathrm{v}$) with triethylamine ($.05 \%$ of total volume) and BHT, mixed by the Alliance 2690 solvent delivery system to help reduce composition differences between runs. Samples were loaded into amber glass vials with $50 \mu 1$ limited volume inserts (Alltech and Associates, Deerfield, IL). All samples were run immediately after extraction. Samples were stored at $4^{\circ} \mathrm{C}$ if they were unable to be loaded into the HPLC immediately. Flow rate was 1.8 ml min. -1 , with each run taking 20-23 minutes. To control fluctuations in retention time due to temperature differences, column temperature was set at $30^{\circ} \mathrm{C}$. Sample temperature was set at $4^{\circ} \mathrm{C}$ to control degradation of samples by heat. Carotenoids were detected at 450 nm , and were quantified by external standards as described previously ($\mathrm{S} 2,3$).

The ratio of the two branches was evaluated as natural logarithm of (α-carotene + lutein $) /(\beta$ carotene $+\beta$-cryptoxanthin + zeaxanthin). Evaluations of individual compounds generally compared the proportion of individual compound relative to the total carotenoid levels.

Mutagenesis: EMS pollen mutagenesis was conducted following the protocol of Neuffer(S4) on the DuPont inbred line Qx47. Carotenoid analysis of maize kernels was conducted by Craft Technologies, Inc (Wilson, NC, USA). Two self-pollinated M_{2} ears derived from the EMS pollen mutagenesis of the inbred line Qx47 segregated for a distinct change in endosperm color from yellow to orange. These putative mutants were designated \#26 and \#28. M_{2} kernels of each type were grown and self-pollinated. All of the orange M_{2} kernels gave uniformly orange M_{3} ears whereas yellow M_{2} kernels produced both uniformly yellow and yellow/orange segregating ears, indicating dominance of yellow over orange. The \#28 putative mutant was backcrossed 4 times into the public inbred B73 and selfed. Orange kernels were crossed to yellow kernels from the last backcross, and a $1: 1$ yellow:orange segregation was observed on 50% of the ears, again consistent with a single, Mendelian recessive gene. A SNP identified in lcyE between B73 and Qx47, which confers a HinfI restriction site in Qx47 and not in B73, allowed a co-segregation analysis on the backcross population described above. Following 4 backcrosses to B73, all of the orange kernels ($\mathrm{n}=47$) were homozygous for the Qx47 (mutant \#28) lcyE haplotype, and all of the yellow kernels ($\mathrm{n}=48$) were heterozygous.

Genotyping: Candidate genes were selected based on previous characterization in maize or by homology with tomato, Arabidopsis, or rice genes (S5, 6). Given the ancient duplication in the
maize genome, active site homology was used to select homologs. Robust PCR primers for the
 the TIGR Maize Database(S8) and refined by prescreening on a diverse panel of 32 lines (Genbank numbers: BV709178-BV709204, BV709242-BV709256, BV709298-BV709330, BV709398-BV709439, BV709481-BV709506, BV727024-BV727770). The selected amplicons with an average span of 500 bp were then sequenced across the full panel of maize lines. One to two regions were sampled from each candidate gene. Given the rapid LD decay in maize we cannot rule out genes that showed no evidence of association (ie. we may have sampled the wrong region or paralogue). Once the lcyE association was identified the gene was sequenced from 12 diverse haplotypes. Three more regions were sampled across entire panel based on putative functional SNPs suggested by sequencing. Promoter haplotypes with multiple TE were scored by amplicon length, using PCR markers provided for maker assisted selection of these alleles.

Transcript profiling: Maize inbreds used for LCYE transcript profiles were grown at the Lehman College field station, Bronx, New York, and developmentally staged endosperms dissected and stored at $-80^{\circ} \mathrm{C}$ until use. RNA Isolation and Reverse transcription: Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen Sciences, Maryland), and DNase I-treated (Invitrogen, Carlsbad, CA) prior to first strand cDNA synthesis using oligo (dT) as a primer and SuperscriptTM III RT (Invitrogen, Carlsbad, CA). 1ul of $50 \mu \mathrm{M}$ oligo (dT) ${ }_{20^{\prime}}$ and 1 ul of 10 mM dNTP mix were mixed with $8 \mu \mathrm{l}$ of DNase I treated total RNA $(\sim 1 \mu \mathrm{~g})$ and incubated at $65^{\circ} \mathrm{C}$ for 5 min , and left on ice for at least $1 \mathrm{~min} .10 \mu \mathrm{l}$ of cDNA synthesis mix ($2 \mu \mathrm{l}$ of 10X RT buffer, $4 \mu \mathrm{l}$ of $25 \mathrm{mM} \mathrm{MgCl} 2,2 \mu \mathrm{l}$ of $0.1 \mathrm{M} \mathrm{DTT}, 1 \mu \mathrm{l}$ of RNaseOUT $^{\mathrm{TM}}$ ($40 \mathrm{U} / \mu \mathrm{l}$), 1 ul of Superscript ${ }^{\text {TM }}$ III RT $(200 \mathrm{U} / \mu \mathrm{l})$ was added and incubated for 50 min at $50^{\circ} \mathrm{C}$ and reactions terminated at $85^{\circ} \mathrm{C}$ for 5 min . Samples were collected by brief centrifugation and $1 \mu 1$ of RNase H added and incubated for 20 min at $37^{\circ} \mathrm{C}$. Quantitative RT-PCR: cDNA samples were amplified on the MyIQ SingleColor Real-Time PCR detection system (Bio-Rad, Hercules, CA), using iQTM SYBR Green Supermix (Bio-Rad, Hercules, CA). $2 \mu \mathrm{l}(5 \mathrm{ng} / \mu \mathrm{l})$ of cDNA; $15 \mu \mathrm{l}$ of 2 X iQTM SYBR Green Supermix; 11μ l of Nuclease-Free water; $1 \mu \mathrm{l}(20 \rho \mathrm{~m} / \mu \mathrm{l})$ of each primer were used in a $30 \mu \mathrm{l}$ reaction volume. Thermal cycling conditions included an initial incubation at $94^{\circ} \mathrm{C}$ for 10 s , followed by 35 cycles of $95^{\circ} \mathrm{C}$ for $10 \mathrm{~s}, 58^{\circ} \mathrm{C}$ for 35 s , and $72^{\circ} \mathrm{C} 10 \mathrm{~s}$. Melt curve analysis was performed verify primer specificity, and PCR products were confirmed by sequencing. The relative quantity of the transcripts was calculated by using the comparative threshold cycle (CT) method. Actin mRNA was amplified simultaneously for normalization between samples. Primers were designed to flank introns (LcyE: TTTACGTGCAAATGCAGTCAA, TGACTCTGAAGCTAGAGAAAG; Actin: CGATTGAGCATGGCATTGTCA, CCCACTAGCGTACAACGAA).
$e Q T L$ in maize leaf tissue: Experimental design, plant material, and array methods are described in detail in the Maize Oligonucleotide Array project database, which is publicly available from www.maizearray.org; this work is Study ID 21, Investigator Stapleton. Array element median spot value from the maizearray spreadsheet page was log-transformed and averaged within treatment group (UV and control). The mean values were merged with marker data for the recombinant inbred lines; the marker data was retrieved from MaizeGDB (www.maizegdb.org); with Iowa combined markers and Genoplante markers merged into the list for a total of 4751 markers. SAS Proc GLM was used to test for significant marker association with expression level for genes TM00018798 and TM00050085 and for treatment interaction for each gene.

Statistical Analysis: Association analysis was conducted using a mixed model incorporating kinship and population structure(S9) as implemented in TASSEL (www.maizegenetics.net)(S10) and SAS/STAT (Version 9.1, SAS Institute Inc., Cary, NC, USA). This approach simultaneously accounts for the multiple levels of relatedness based on random genetic markers that are used to establish population structure and a kinship matrix. The method has very good control of Type I error rates when a trait is polygenic. When examining the ratio of the two branches, we used a standard GLM model as this trait is either a mono- or oligo-genic trait.

Figure S1. Relative gene expression of LCYB and LCYE in W22 maize seeds by quantitative RT-PCR.

mRNA transcript levels

- Figure S2. LCYE Quantitative RT-PCR for endosperm at 15 days after pollination (top) and 20 days after pollination (bottom). Samples surrounded by green box have transposon insertions near the start site.

marker gpm106a	\mathbf{P} value	bin	expression levels
umc1316	0.00003185	2.03	\square
gpm591b	0.00004810654	8.05	8.05
mmp127	0.000106426	7.03	
mmc0411	0.000109265	7.03	

Figure S3. Significant markers at a FDR of 10% are shown; P values are from SAS GLM analysis. Expression levels of probe TM00050085 designed from (IcyE sequence based AZM_584852) in IBM (B73 x Mo17) mapping lines were calculated by averaging the expression levels by allele at each of these marker loci. Probe TM00050085 was used to estimate expression. The second most significant marker is umc1316, which is on the same physical contig as IcyE. Although these lines differ for a significant promoter haplotypes, they do not segregate for the large transposon promoter differences.

Figure S4. Comparison of (and (carotenoid levels for the EMS mutagenized lcyE allele (Orange allele is the \#28 EMS mutation of the $\mathrm{Qx47}$ allele; Y is wild-type $\mathrm{Qx47}$ allele). This is the average of four samples for each endosperm genotype (endosperm tissue is triploid). The error bars are standard errors of the mean.

IcyE PCR assay 5'indels / TE

IcyE PCR assay SNP216 (dominant)

amplicon in other conserved gene (control)

SNP specific primer

IcyE PCR assay 3'indel (codominant)

deletion specific primer

Figure S5. PCR assay for target polymorphisms. PCR assay for key associated polymorphisms haplotypes observed across the inbred line panel and diagram of primer annealing positions, black triangles represent indels (not to scale), colored lines represent the PCR amplicons corresponding to bands on gel identified by color. Assays are designed to incorporate the use of all indicated primers in a single reaction; the haplotype assignment (listed in each depicted lane) will result from one to multiple amplicons. For the 5 ' indels, class 1 and class 4 both share the promoter transposon; they were statistically the same in their effect and were fused for analysis.

Figure S6. Details for the lcyE 5' Indel PCR for Marker-Assisted Breeding

LCYe PCR assay 5'indels / TE

$\begin{array}{lccccccccc}\text { TE103PF F-1 LEFT PRIMER } & 149 & 23 & 61.63 & 39.13 & 6.00 & 2.00 & \text { CGCTAGCAAGCCCATTATTTTTA } & \text { (F1) } \\ \text { TE103PR R-1 RIGHT PRIMER } & 428 & 22 & 60.35 & 45.45 & 6.00 & 2.00 & \text { CGGTATGGTTTTTGGTATACGG } & \text { (R1) }\end{array}$ TE103PR R-1 RIGHT PRIMER $428 \quad 22$ 60.35 45.45 6.00 2.00 CGGTATGGTTTTTGGTATACGG (R1)

TE105PR R1 RIGHT PRIMER $\quad \begin{array}{lllllllll}306 & 21 & 61.40 & 61.9 & 3.00 & 1.00 & \text { GAGAGGGAGACGACGAGACAC (R2) }\end{array}$

ZGt111204-976R(1) F1 LEFT $\quad \begin{array}{llllllllll}1299 & 22 & 60.36 & 40.91 & 3.00 & 1.00 & \text { AAGCATCCGACCAAAATAACAG } & \text { (F2) }\end{array}$
Note: There are cases in weak PCR reactions, when the $250+380 \mathrm{bp}$ class will be confused with the 250 bp class . Essentially the 380bp band is not amplified.
On a functional note: 993 bp class and $150+280 \mathrm{bp}$ class are functionally similar as the close insertion is most important. These are collapsed together for many of the haplotype statistical analyses. $150+280 \mathrm{bp}$ is rare. These haplotypes increase B-carotene and zeaxanthin.

Figure S7. Details for the lcyE SNP216 PCR for Marker-Assisted Breeding

LCYe PCR assay SNP216

 dominant marker
amplicon in other conserved gene (control)

SNP specific primer

```
OLIGO
S216-L1 LEFT PRIMER
S216-R1 RIGHT PRIMER
PRODUCT SIZE: }39
```

Upper band is a control PCR product from a separate gene. This just insures DNA quality is sufficient for PCR.

Figure S8: Details for the lcyE 3'Indel PCR for Marker-Assisted Breeding

Table S1. Haplotype estimated effects. Count of haplotypic classes and estimated effects on the ratio of the pathway braches $\ln ($ lutein $+\alpha$-carotene) $/($ zeaxanthin $+\beta$-carotene $+\beta$ cryptoxanthin)

Full haplotype							
5'TE	216	2238	3'INDEL	N	$\ln ($ ratio $)$	LSMEAN	STDERR ratio
$1+4$	G	G	0	4	-0.632	0.278	0.532
$1+4$	G	G	8	6	-1.2	0.227	0.301
2	C	G	0	2	0.134	0.394	1.144
2	C	T	0	2	1.019	0.394	2.77
2	G	G	0	21	-0.11	0.122	0.896
2	G	G	8	9	-0.952	0.186	0.386
2	G	T	0	10	0.539	0.176	1.714
3	C	G	0	23	0.473	0.116	1.604
3	C	T	0	38	0.766	0.09	2.152

Maximum change in flux 9.2 -fold. ANOVA $R^{2}=58 \% ; N=115 ; P=9.1 \times 10^{-17}$

Two-indel haplotype				LSMEAN	STDERR 5'TE
3'INDEL	N	\ln (ratio)			
$1+4$	0	5	-0.984	0.275	0.374
$1+4$	8	8	-1.127	0.217	0.324
2	0	47	0.03	0.09	1.03
2	8	21	-0.792	0.134	0.453
3	0	69	0.645	0.074	1.906
3	8	1	-0.103	0.614	0.902

Maximum change in flux 5.9 fold
ANOVA $R^{2}=50 \% ; N=151 ; P=1.6 \times 10^{-20}$

Table S2. IcyE gene structure. Based on maize contig ZmGSStuc11-12-04.976.1. Predicted exons are in yellow, predicted in other genes features in green, polymorphisms of interest in red (number next to them are the aligned sequence position used in the text), and primers to score key polymorphisms are in blue.

2761 TTGGCGGACC GAAGGTGAGG TGCGTGGCGA CCGAGAAGCA CGACGAGACG GCGGCGGTCG s216-L1 left primer SNP216(T/G)
2821 GGGCGGCAGT GGGCGTGGAT TTCGCGGACG AGGAGGACTA CCGCAAGGGC GGCGGCGGCG 2881 AGCTGCTTTA CGTGCAAATG CAGTCAACCA AGCCCATGGA AAGCCAGTCC AAGATCGCTT 2941 CCAAGGTGAT TAGATTGCCA ACACTAATTT GCTAATCATA TTTGGAGTTT GTTCTAGTGA 3001 TCGTGATTAA CGTGTGAAGG AAAAAAATAA ATTATAGGTT TCGCCCCCCT TTATTGTGCT 3061 GGTATTTGGA GATTTATTTA CAGGATGGAA TCCAGAACAT CATGCACCTA CTGAATATTA 3121 CCTTTTCCGG TAGAAAAAAG AAAACATAAC CAATGTTTAG GGCACGACAA TACTGCACGT S216-R1 right primer
3181 TTCAATATGA ACCACGTTGT CCTGCAGCCG TACTTCACCT GCGTTGGCTA CAGCTACAAG 3241 GATGTTCACT GGAAAGCAGG GTGATCGCCT AGCGGTAGGC AACGCGTTTC ACCTTCCTGG 3301 CTGGTTTTGC AGTCTAGATG TTTCGAGCCA GTAGATTGAC ATAGTTTGCC CGTTTGGAAA 3361 TGTATGTAAA TTAAATATTC TGGAAATGTA TTTCATGAGA AAATGGCAGT ACCTCATCAG 3421 GAACTGTCAT AACACTAAAT CTACTGTGGT TCGTGGGAAC AAAGACTGCT CACATACTTC 3481 TCTGGACTAT TCTACTTATA CGAACTACAG TGCCAGGCAC CACATTAACG ACCGTTATTT 3541 TTTTGTGCGC ACTAGTTCCT TACATTGTAT GAGTATGACA GTAGCTTGTT GCCTGATCAC 3601 ACAGTAATGT TGAGTTCTCT GGATTGTACA CGCATGAGCA TCATGTCATT TCCAGTCCAA 3661 TGTCACTGCT GACTTGCTAT AATTTGAGCA GTCAAGTGGA GTACTCTAGC TAGGCACAGG 3721 CAATTCCACA AAACCTGGAA TTTTGTATAT GACTGCACAG AACAGAAGAG CTTCCTTGTA 3781 TAGCGCTCTT TCTTTTTTTC CTTCTGTATC AATACAAGTT GTGCAGATCT CCTGCCGACC 3841 GTTAAAAAAA CCCGCAGAGC TTCAAATGGA GCCTTTGTGC CATTATTTTT TTTATACGGA 3901 ATACGTGGGC CATAAACTAT GCACCCCACC AGCGCTATCC TTATTTTTTC TTCATAAAAA 3961 AACTATTTTG CTTCAGGGCG AGGTAACCAA TGTTCAACTT TACATGGCAT CAGTCTTATT 4021 TTATATAAAA AAGTGCTAAC AGTCTATTCT GTCTTTGTAT CCTAAGGAAA GTTAACTGTG $2^{\text {nd }}$ exon
4081 GTCTTATGTT CTGTTTGCAG CTATCGCCCA TATCTGATGA AAATACAGTG CTTGATTTGG 4141 TTATCATTGG TTGTGGTCCA GCTGGTCTTT CTCTAGCTTC AGAGTCAGCT AAGAAAGGTC 4201 TCACTGTAGG TCTCATTGGG CCTGACCTTC CATTCACAAA TAACTATGGT GTGTGGGAGG 4261 ATGAATTTAA AGGTATTCTG TTATTTGCTT GTTGAATGCA GAGTGCCTGC ATAACATCTC 4321 TGTCAGTGTC AGCCCAACTT AACATGATGA TATATACTTT TTTCTCTCGT CTACTGTCCA $3^{\text {rd }}$ exon
4381 GATCTCGGTC TAGAGAGCTG TATCGAGCAC GTCTGGAAGG ATACTATTGT CTACCTAGAC 4441 AATAACAAGC CGATACTGAT TGGCCGTTCT TATGGCAGGG TGCACCGTGA CTTGCTCCAT 4501 GAGGAACTGC TGAAAAGGTA AATCTTCATG TGGTAGTTAG AATTGGGACT CAGAAGTGTC 4561 TTTTCCATGC ATGGTGGTAT ATAATATAAT TGACGAGTAG CAACACTTGA ATAATTCGCA $4^{\text {th }}$ exon
4621 GATGCTATGA AGCTGGCGTG ACATACCTGA ACTCCAAAGT GGACAAGATC ATAGAATCTC 4681 CAGATGGACA CAGAGTAGTC TGTTGTGACA AGGGTCGCGA GATAATTTGC AGGCTTGCCA 4741 TTGTTGCTTC GGGGGCAGCA TCTGGTAGGC TTCTAGAGTA TGAGGTTGGG GGTCCCCGTG 4801 TTTGCGTGCA GACTGCATAC GGAGTAGAAG TTGAGGTACA CCAAGACTCA AGAATCTGTT SNP T/G (2238)
4861 CATTTTTTTT TATTGCTTGC ACAAATTAGA CAGACCAGTT TGCTCAATAA GTCTCTAGTT SNP T/A (2312)
4921 GAAATTTTCA ATATATCATT TATGTGCTAG ATCTTCGTTA TTTCAAAACT GTTTGAAAAT 4981 TTCAGGTGGA AAATAACCCA TATGATCCTA GCTTAATGGT TTTCATGGAC TACAGAGATT 5041 GTTTCAAAGA GGAATTCTCA CACACTGAAC AAGAAAATCC CACTTTCCTG TATGCTATGC 5101 CCATGTCACC CACACGAGTT TTCTTTGAGG TCGGTACAGA GTTTTTGTTA CCTCTGTGAT $6^{\text {th }}$ exon
5161 TAAGCAACCC GCGCTTCCCA TCAAATTCTC AAAATTTGTG ACTAAATACC TTATCACAGG 5221 AAACATGCTT AGCTTCTAAA GATGCTATGT CTTTTGATCT ACTTAAGAAG AGGCTGATGT 5281 ATCGGTTGAA CGCGATGGGA ATTCGTATCC TGAAAGTTTA TGAGGAGGTA AGAGGGTCTA $7^{\text {th }}$ exon
5341 CAATTCTTAA TTCTCACACA TTATATTCTG AAAATAAACT GAAATGTTCT CGGTTTAAGG 5401 AATGGTCCTA CATTCCTGTT GGGGGGTCCT TACCAAACGC AGATCAGAAG AGCCTTGCAT 5461 TCGGTGCTGC AGCAAGTATG GTGCATCCTG CAACAGGTAC ATACGAATCA TCAATTTTTT $8^{\text {th }}$ exon
5521 GCACGCCAGT TTCCTCCTAG CTTATATTGA CAACTTTTCG CAAAATACAT AGGGTACTCA 5581 GTGGTCAGAT CTTTGTCTGA GGCTCCAAGA TATGCTTCTG TGATATCGGA CATCTTAGGA 5641 AATCGAGTTC CTGCAGAATA TATGCTCGGA AATTCACAAA ATTACAGTCC ATCAATGCTT 5701 GGTAAGCATT TTTCTGGTAT TTATTCAAGT TGGTTGGTTC GGTTCTACTG TGTAAAGGTT $9^{\text {th }}$ exon
5761 CAGACAAGTT AGCGAAACTA TTATAATATG ATGTTTCAGC ATGGAGAACA CTGTGGCCTC

```
5 8 2 1 ~ A A G A G A G G A A ~ A C G C C A A C G A ~ T C C T T C T T C C ~ T T T T C G G A T T ~ A G C G T T G A T A ~ A T C C A A C T G A ~
5 8 8 1 \text { ATAATGAAGG CATACAAACA TTCTTCGAAG CCTTTTTCAG GGTGCCGAGA TGGTAGTCGC}
5 9 4 1 ~ A C T T T T T A C C ~ T T G T C T C A G T ~ T G G T C T T C A G ~ A G A A A T T C A G ~ T G C G C T G A A G ~ G C T A C T A C C T
                    10}\mp@subsup{0}{}{\mathrm{ th }}\mathrm{ exon
6 0 0 1 ~ C C A T G A A G T T ~ T T T G A T A A C C ~ A C T A T T T T T C ~ C T T G A A C A G G ~ A T G T G G C G A G ~ G A T T T C T T G G ~
6 0 6 1 ~ C T C G A C C C T T ~ T C A T C C G T C G ~ A T C T C A T A C T ~ A T T C T C A T T C ~ T A C A T G T T T G ~ C G A T A G C T C C ~
6 1 2 1 ~ A A A T C A A T T G ~ C G A A T G A A C C ~ T T G T C A G G C A ~ T C T C C T C T C T ~ G A C C C A A C T G ~ G C T C A T C C A T ~
6 1 8 1 ~ G A T C A A G A C C ~ T A C C T G A C C T ~ T A T A A A A C C A ~ T T T G C A C C A G ~ G C T G C A A G A A ~ C T C T T A G A A A ~
6 2 4 1 ~ C T G T A C A G T T ~ T T G T A G T T G T ~ A C A T A A G T T A ~ G A G A G G A T C T ~ G G G G G G T T A C ~ T T G G C G G C G G ~
6 3 0 1 ~ A T C T A G G G G T ~ T A G C A G C A A T ~ G C T A T A A T A C ~ A C T G T A A A T C ~ T T T T A T G G T T ~ G C T A T G G T G A ~
6 3 6 1 ~ T T G G A T A G A G ~ A A G C A C A C C G ~ T G T T G T G C A C ~ G A T G G A A G A A ~ T A A T A A G A G A ~ G A T C A G G T G A ~
6 4 2 1 ~ T G G T C A T G G T ~ T C C T G C A T T \sim ~ G G C C A A T T T T ~ A G G T T G C A T T ~ T G C T G T T T C A ~ A G G C T T C T T A ~
6 4 8 1 ~ C A T G T C C A A T ~ C A A T T A C A C C ~ C T T A T T T T A G ~ G T T G C T C A A T ~ G C C A A T T T T C ~ T T G T G G A A C A ~
6 5 4 1 ~ A T A T T T G C A A ~ A A G C A A A A A A ~ G G G A A A A A C A ~ T A A T T G G A T G ~ T G C A A G A A T A ~ G T A T G A G G C T ~
6 6 0 1 ~ G T C C T T G C T C ~ C T G C G C C A T G ~ G C A T T T A G C T ~ G C A A G A T G T T ~ G G G G A A G G A G ~ A A G A C C T G T A ~
6 6 6 1 \text { GGAGACTAAG GTTGGAGGCA AGGGAGAGAA AGGAAGGAGG GCAGGAGGAG AGGCGGAACA}
6 7 2 1 ~ A C C C G T C T C C ~ C T C C A T C T C T ~ C T A C C T T C T T ~ С T C C T G C G C C ~ C C T A T C C A T C ~ G C T C G C A C C A ~
    SNP A/G_(4184)
6 7 8 1 \text { CCCACTGACC GGCCGGCGGC ATCCTTATTA CCATAACATC ACGGGACGGT GGCGCGATGC}
6 8 4 1 ~ A A G G A G G C C C ~ A C T G A G C C C G ~ G A T G A G T A C T ~ G G G T G A T A T C ~ G C C G C C G G C G ~ C T G C T G C A C C ~
                    3pINDL-L2 left primer
6 9 0 1 ~ A G C C G G C G T C ~ C A C C A T C G T C ~ G T G G C C A T C G ~ A C C G G G A C C G ~ G A A C A G C C A A ~ C T G G C C G T G A ~
                                    SNP C/G (4315)
6 9 6 1 ~ A G T G G G T G G T ~ G G A C C A C C T C ~ C T C T C C G G C G ~ C C T C T C A T A T ~ C G T C C T G C T C ~ C A C G T G G C C G ~
            3pINDL-L1 left primer 3pINDL-R2 right primer
7021 TCCATTACCA CACGACCCGT ACGTCGTTCA TCTCCCGTAC -...-.--CC ATTTCGCCAG
7 0 8 1 ~ T G C A G C A G C A ~ G C A G C T G A G C ~ T C T G G T T T G C ~ T T G G A C A T G C ~ G C A G A T G G G T ~ T C G C C A T G G T ~
7 1 4 1 ~ T G A G A C C A C G ~ C A G G G T G C G C ~ T G G A G G C T G A ~ A A T G A A G G A G ~ A T C T T T G T C C ~ C C T A C A G A G G ~
7 2 0 1 ~ A T T C T T C A A C ~ C G G A A T G G G G ~ T A A A T G T A ~
```

Table S3. Association for other candidate genes with lcyE effects included as a covariate. NC is noncovergence of the mixed model often caused by non-normal trait distributions or low frequency SNPs. Please note this table includes over 600 tests, and these P values have not been multiple test corrected. Except for a few false very significant results $(P<0.002)$ most of these are false positives. For contrast $L c y E$'s initial association was $P=2.23 \times 10^{-10}$.

Since the completion of the study of the LcyE, we surveyed the numerous hydroxylase paralogues in maize and we have found an additional important modifier.

Gene	Site in amp	α-carotene	β-carotene	β-crypto xanthin	\ln (ratio β-carotene to ALL)	Ln(ratio alpha to beta branch)	Lutein	Total carotenoids	Zeaxanthin
DXS	28	0.2371	0.1519	0.0563	0.4102	0.7845	0.2285	0.0593	0.1241
DXS	60	0.8879	0.2813	0.5883	0.0333	0.5988	0.8708	0.5704	0.6461
DXS	76	0.81	0.1171	0.9992	0.0173	0.4242	0.701	0.1109	0.5923
DXS	77	0.1778	0.0077	0.0245	0.6387	0.1216	0.1762	0.0439	0.0202
DXS	78	0.1778	0.0077	0.0245	0.6655	0.1216	0.1762	0.023	0.0202
DXS	230	0.5205	0.1184	0.3269	0.1333	0.7315	0.1121	0.0124	0.5997
DXS	254	0.2202	0.0116	0.0354	0.2741	0.6124	0.1412	0.0115	NC
DXS	278	0.8048	0.8835	0.6287	0.7257	0.9462	0.4561	0.6865	0.6827
DXS	355	0.6518	0.4944	0.7252	0.0189	0.511	0.3273	0.4035	0.9212
DXS	455	0.3151	0.0065	0.1349	0.4172	0.1577	0.174	0.0769	0.1702
DXS	483	0.2233	0.0096	0.0231	0.378	0.3398	0.3018	0.0174	0.025
DXS	486	0.6477	0.2652	0.2275	0.3596	0.2886	0.4687	0.9709	0.4079
DXS	498	0.7345	0.241	0.2017	0.3759	0.2002	0.3535	0.9389	0.3472
DXS	500	0.7345	0.241	0.2017	0.3759	0.2002	0.3535	0.9389	0.3472
DXS	501	0.7345	0.241	0.2017	0.3759	0.2002	0.3534	0.9389	0.3472
DXS	550	0.2669	0.037	0.2126	0.4405	0.4883	0.2648	0.5178	0.6628
IPPI	8	0.8112	0.084	0.2897	0.1898	0.764	0.3348	0.0459	0.1987
IPPI	139	0.9833	0.9171	0.8982	0.1041	0.8642	0.2773	0.4831	0.7651
IPPI	179	0.3325	0.7327	0.4663	0.4661	0.3537	0.5148	0.875	0.5798
IPPI	282	0.829	0.6559	0.7676	0.0278	0.734	0.0789	0.3568	0.8519
IPPI	318	0.8327	0.5699	0.7606	0.0203	0.6756	0.0457	0.3189	0.8909
IPPI	353	0.8159	0.4442	0.0205	0.1233	0.5828	0.0272	0.0043	0.0441
IPPI	363	0.8159	0.4442	0.0205	0.1233	0.5828	0.0272	0.0043	0.0441
IPPI	443	0.6911	0.4921	0.0288	0.2649	0.4581	0.0261	0.0042	0.0421
IPPI	464	0.7282	0.5847	0.0345	0.2229	0.486	0.0179	0.0038	0.0405
GGPR	286	0.9369	0.9273	0.4883	0.747	0.4076	0.796	0.6812	0.8748
GGPR	376	0.57	0.8065	0.5194	0.5828	0.2386	0.8719	0.6522	0.9112
GGPR	412	0.8061	0.9808	0.7428	0.9891	0.1495	0.8592	0.5688	0.7711
CYC3-Y1 linked	23	0.6393	0.24	0.0042	0.631	0.0435	0.8876	0.055	0.088
CYC3-Y1 linked	26	0.5911	0.074	0.0061	0.5947	0.7579	0.7681	0.0519	0.0217
CYC3-Y1 linked	54	0.6134	0.1812	0.0016	0.6302	0.0435	0.7837	0.0496	0.0409
CYC3-Y1 linked	88	0.5287	0.4183	0.0043	NC	0.1816	0.5562	0.242	0.5195
CYC3-Y1 linked	91	0.6349	0.791	0.5006	0.6004	0.3798	0.6268	0.6101	0.593
CYC3-Y1 linked	180	0.3863	0.0188	0.001	0.8401	0.364	0.6895	0.0149	0.0039
CYC3-Y1 linked	321	0.4263	0.1398	0.0017	0.7642	0.0293	0.5794	0.0213	0.0352
CYC3-Y1 linked	362	0.4695	0.1514	0.0016	0.7254	0.0271	0.5959	0.0201	0.0294
PDS	18	0.8802	0.8974	0.1835	NC	0.253	0.2656	0.8978	0.2143
PDS	79	0.4025	0.9908	0.6043	NC	0.8083	0.8773	0.8363	NC
PDS	127	0.2148	0.991	0.8985	NC	0.9135	0.3852	0.7841	NC
PDS	131	0.3594	0.672	0.2522	0.172	0.8956	0.9504	0.5738	0.4989
PDS	133	0.0092	0.6048	0.3693	0.3684	0.5978	0.7748	0.9983	NC
PDS	139	0.1092	0.4423	0.5733	0.0066	0.6981	0.4126	0.7815	NC
PDS	152	0.3321	0.7198	0.2701	0.1269	0.7553	0.9353	0.5587	NC
PDS	228	0.0572	0.1975	0.4745	0.071	0.304	0.0357	0.4489	NC

PDS	234	0.0063	0.4809	0.355	0.2519	0.9464	0.7728	0.8827	0.8871
PDS	272	0.6654	0.8195	0.297	0.1222	0.2284	0.2233	0.9346	NC
PDS	287	0.1897	0.968	0.8924	0.1841	0.9935	0.4181	0.8318	NC
ZDS	1	0.642	0.2672	0.5328	0.1934	0.1161	0.0333	0.5945	NC
ZDS	2	0.642	0.2672	0.5328	0.1934	0.1161	0.0333	0.5945	NC
ZDS	11	0.8396	0.1983	0.5624	0.0465	0.0467	0.0018	0.2332	NC
ZDS	18	0.1503	0.0322	0.0075	0.3016	0.2737	0.1594	0.2094	0.0394
ZDS	66	0.6081	0.6857	0.8158	0.9189	0.1213	0.7664	0.4856	0.2952
ZDS	171	0.9719	0.9492	0.834	0.5235	0.5321	0.4577	0.8066	0.5402
ZDS	184	0.9518	0.9468	0.7323	0.5556	0.5147	0.4024	0.769	NC
ZDS	232	0.378	0.7053	0.4137	0.4004	0.7075	0.4239	0.5496	0.8488
ZDS	240	0.2529	0.632	0.3714	0.4677	0.0312	0.0255	0.3853	0.9601
ZDS	246	0.2529	0.632	0.3714	0.4677	0.0312	0.0255	0.3853	0.96
ZDS	295	0.7837	0.0702	0.0524	0.243	0.0024	0.0989	0.4511	0.0358
ZDS	298	0.9557	0.0748	0.0233	0.4399	0.0034	0.316	0.2071	0.0141
ZDS	308	0.3108	0.6138	0.2585	0.4899	0.0511	0.0266	0.6494	0.5288
ZDS	319	0.4409	0.0592	0.0348	0.2822	NC	0.2883	0.3085	$9.75 \mathrm{E}-04$
ZDS	335	0.8568	0.243	0.6598	0.0271	0.0669	0.0016	0.1915	0.928
ZDS	336	0.3157	0.2312	0.1889	0.1852	0.5988	0.2959	0.6522	0.921
ZDS	353	0.3307	0.1081	0.0757	0.2991	0.0595	0.96	0.9059	0.0455
ZDS	361	0.5256	0.9609	0.4308	0.2515	0.8792	0.0876	0.1758	0.384
ZDS	367	0.8731	0.2602	0.6681	0.029	0.0643	0.0017	0.1963	0.9075
ZDS	385	0.7028	0.2944	0.5314	0.1223	0.1051	0.0117	0.3432	0.7657
ZDS	392	0.3479	0.5354	0.2189	0.3847	0.1203	0.827	0.2506	0.112
ZDS	393	0.8993	0.2839	0.6536	0.0373	0.0772	0.0032	0.2291	0.8479
LCYB	245	0.0113	0.7164	0.8482	0.5514	0.0977	0.0193	0.1451	0.5793
ZEP1	4	0.9198	0.8331	0.8092	0.2878	0.4009	0.4954	0.9906	NC
ZEP1	22	0.3307	0.6742	0.7683	0.9957	0.1559	0.325	0.862	NC
ZEP1	30	0.6661	0.1045	0.3337	0.6447	0.3068	0.7685	0.2967	NC
ZEP1	287	0.2799	0.7669	0.6654	0.1363	0.3472	0.6085	0.9097	0.7806
ZEP1	290	0.025	0.1072	0.6579	0.0229	0.7588	0.0736	0.0294	0.4187
ZEP1	318	0.2602	0.5188	0.5674	0.7964	0.1841	0.6976	0.5644	0.2024
ZEP1	391	0.4151	0.2918	0.8485	0.6222	0.625	0.7273	0.8793	0.3292

Table S4. HPLC carotenoid values for the 2003 field in IL.

Taxa	Lutein	Zeaxanth in	β-crypto xanthin	α-Carote ne	β-Carotene	Total Carotenoid
3811	13.28	18.14	2.18	0.07	2.71	36.38
4226	16.9	8.01	0.68	0.15	0.34	26.08
4722	5.77	14.59	3.01	0.09	1.99	25.45
A214N	13.74	8.43	0.71	0.25	0.5	23.63
A239	13.93	13.26	2.92	0.44	2.39	32.94
A272	5.72	43.97	8.52	0.2	7.54	65.95
A556	14.5	4.26	0.76	0.79	1.75	22.06
A6	7.59	22.94	5.5	0.07	2.99	39.09
A619	10.03	10.05	2.46	0.41	6.11	29.06
A632	6.87	10.23	1.11	0.05	0.69	18.95
A634	6.04	2.27	0.21	0.1	0.08	8.7
A635	20.55	7.01	0.66	0.25	0.92	29.39
A641	8.29	5.97	3.57	0.34	1.1	19.27
A654	5.24	0.76	0.16	0.05	0.23	6.44
A659	12.68	8.05	0.76	0.42	0.62	22.53
A661	11.28	4.86	0.27	0.11	0.06	16.58
A679	9.11	2.51	0.58	0.8	0.57	13.57
A680	11.4	2.82	0.47	0.41	0.24	15.34
B10	27	8.42	1.36	0.79	1.87	39.44
B103	8.34	6.52	1.07	0.09	0.25	16.27
B104	19.62	5.92	0.82	0.21	0.87	27.44
B105	21.73	6.05	0.99	0.68	1.84	31.29
B109	16.67	5.3	1.16	1.1	0.61	24.84
B115	20.48	6.41	0.67	0.34	2.22	30.12
B14A	7.64	4.49	0.6	0.23	0.49	13.45
B164	11.84	5.53	0.33	0.11	0.81	18.62
B2	12.79	5.66	0.55	0.24	0.5	19.74
B37	17.07	4.57	0.9	0.57	1.15	24.26
B46	11.06	9.34	1.78	0.48	1.46	24.12
B52	6.69	4.06	0.29	0.11	0.26	11.41
B57	21.49	2.45	1.12	1.39	0.74	27.19
B64	1.4	13.47	2.65	0.05	2.2	19.77
B68	8.61	5.05	0.29	0.17	0.19	14.31
B73	11.75	4.79	1.27	0.91	0.57	19.29
B73HTRHM	12.88	3.93	0.67	0.54	0.3	18.32
B75	15.29	3.23	0.61	1.07	1.86	22.06
B76	31.28	5.72	1.18	1.11	1.28	40.57
B77	8.19	5.95	1.23	0.61	8.46	24.44
B79	18.47	2.77	0.47	0.34	0.83	22.88
B84	12.15	4.18	0.33	0.22	0.49	17.37
C49	17.16	1.41	1.06	2.03	1.51	23.17
C49A	6.95	9.19	1.33	0.1	0.53	18.1
CH70130	6.27	6.09	1.33	0.13	1.25	15.07
CH9	9.53	6.08	1.51	0.11	1.54	18.77

CI21E	4.15	5.12	0.44	0.11	0.24	10.06
CI31A	18.36	0.89	0.56	0.46	0.82	21.09
CI3A	8.79	17.34	2.31	0.27	2.95	31.66
CI7	6.36	2.77	0.84	0.87	13.63	24.47
CI90C	16.38	3.92	0.35	0.12	0.72	21.49
CI91B	19.24	12.34	1.69	0.27	1.82	35.36
CM105	8.81	3.78	0.48	0.51	2.07	15.65
CM174	9.56	4.47	0.73	0.44	1.87	17.07
CM7	15.26	4.63	0.99	0.98	1.96	23.82
CML323	3.83	18.03	5.26	0.12	5.31	32.55
CML328	3.35	23.56	10.84	0.51	7.7	45.96
CMV3	14.76	1.92	0.66	0.85	2	20.19
CO125	9.87	0.82	0.25	0.34	0.15	11.43
D940Y	16	8.72	1.19	0.23	1.2	27.34
DE1	12.69	8.6	0.95	0.1	1.16	23.5
DE3	13.85	2.4	0.7	1.52	13.34	31.81
DE811	4.26	22.89	3.01	0.07	2.14	32.37
EP1	12.13	11.41	1.93	0.14	0.8	26.41
F2	8.47	3.91	0.45	0.16	0.27	13.26
F2834T	5.15	6.9	0.85	0.02	0.93	13.85
F44	5.51	8.88	1.55	0.14	1.08	17.16
F6	15.04	13.52	0.79	0.21	0.98	30.54
GT112	6.11	4.74	0.29	0.32	1.39	12.85
H100	11.12	8.17	0.88	0.14	0.48	20.79
H49	22.01	10.94	0.47	0.24	1.3	34.96
H84	8.44	2.38	0.31	0.31	2.72	14.16
H91	7.21	3.33	0.18	0.06	0.18	10.96
H99	25.39	8.52	0.6	1.42	1.69	37.62
HY	7.22	3.28	0.28	0.21	0.06	11.05
K148	15.23	1.06	0.64	0.42	3.65	21
K4	7.87	3.5	1.8	0.22	5.29	18.68
KI11	7.77	22.84	2.47	0.12	4.06	37.26
KI21	13	20.41	1.62	0.29	2.28	37.6
KI3	2.28	23.61	4.79	0.09	2.32	33.09
K143	12.6	21.41	2.9	0.6	4.42	41.93
KI44	10.63	20.31	3.37	0.21	1.56	36.08
KUI2007	7.09	31.18	4.86	0.08	3.15	46.36
L317	8.38	5.62	0.7	0.09	0.37	15.16
L578	4.61	4.43	0.45	0.03	0.57	10.09
M14	31.33	8.79	1.06	0.68	1.8	43.66
MEF15655	6.38	6.27	1.84	0.25	0.55	15.29
MO17	17.24	14.25	1.18	0.14	1.1	33.91
MO44	12.13	5.83	0.42	0.12	0.56	19.06
MO45	17.32	12.57	3.07	0.31	2.25	35.52
MO46	17.51	6.98	1.1	0.73	0.98	27.3
MO47	11.35	9.72	1.82	0.14	1.46	24.49
MOG	5.56	12.18	3.13	0.16	3.59	24.62
MS1334	21.68	2.87	0.7	0.37	0.4	26.02
MS153	19.66	5.24	0.6	0.14	1.66	27.3
MS71	8.91	3.04	0.22	0.06	0.24	12.47

MT42	10.26	6.86	0.68	0.76	1.92	20.48
N192	10.71	5.98	1.01	0.57	0.52	18.79
N28HT	22.9	9.17	0.9	0.31	0.58	33.86
N6	9.5	5.84	1.59	0.65	3.01	20.59
N7A	24.48	6.18	1.48	1.34	0.64	34.12
NC222	14.83	7.88	2.19	0.63	4.15	29.68
NC230	7.26	13.69	1.94	0.36	3.47	26.72
NC232	4.26	6.77	1.03	0.1	2.12	14.28
NC236	5.02	6.68	1.01	0.18	2.25	15.14
NC238	11.81	5.67	0.72	0.21	2.09	20.5
NC250	9.98	3.17	0.33	0.08	0.37	13.93
NC258	11.52	6.88	0.18	0.01	0.17	18.76
NC260	6.84	10.1	1.72	0.06	1.59	20.31
NC262	4.89	13.66	1.4	0.09	1.46	21.5
NC264	13.63	6.07	0.32	0.08	0.68	20.78
NC268	10.03	12.56	3.79	0.29	2.03	28.7
NC290A	9.06	16.95	2.87	0.35	3.58	32.81
NC292	13.88	6.29	1.67	0.77	0.71	23.32
NC294	17.62	4.86	0.95	0.98	3.9	28.31
NC298	18.1	18.32	2.83	0.22	2.76	42.23
NC300	0.7	1.04	3.08	0.23	1.9	6.95
NC302	2.37	17.91	2.11	0.08	1.56	24.03
NC306	7.49	9.59	2.14	0.13	1.07	20.42
NC308	12.9	8.2	2.17	0.46	1.33	25.06
NC310	3.47	1.69	0.17	0.05	0.07	5.45
NC312	3.49	3.23	0.42	0.08	0.18	7.4
NC314	5.4	7.26	0.9	0.08	0.34	13.98
NC318	3.99	3.85	0.28	0.05	0.34	8.51
NC320	2.75	6.93	0.78	0.01	0.64	11.11
NC322	4.59	3.89	0.2	0.03	0.19	8.9
NC324	5.76	5.36	0.37	0.05	0.12	11.66
NC326	11.71	4	0.59	0.39	0.24	16.93
NC328	5.72	1.53	0.15	0.07	0.24	7.71
NC330	12.9	4.04	0.97	0.55	0.33	18.79
NC332	4.03	4.2	0.24	0.04	0.25	8.76
NC334	3.82	4.32	0.26	0.04	0.21	8.65
NC338	3.64	0.38	0.63	0.28	0.68	5.61
NC342	11.21	8.7	0.92	0.17	1.02	22.02
NC344	12.39	7.609	0.394	0.04	0.321	20.754
NC350	2.655	1.488	2.356	0.44	2.46	9.399
NC354	8.528	19.195	4.606	0.78	5.188	38.297
NC356	8.366	31.93	4.124	0.3	2.561	47.281
NC358	17.172	8.319	1.921	1.09	0.787	29.289
NC360	9.259	15.615	1.407	0.11	0.807	27.198
NC362	14.37	13.661	2.4	0.36	3.105	33.896
NC364	12.523	12.586	2.358	0.35	2.707	30.524
NC366	11.024	14.843	3.189	0.6	2.594	32.25
NC368	10.557	7.91	1.65	0.34	0.651	21.108
NC370	1.751	7.807	0.504	0.09	0.735	10.887
NC372	11.161	2.849	0.595	0.43	0.322	15.357

ND246	16.061	4.164	0.239	0.43	1.106	22
OH40B	27.309	4.319	0.824	0.88	2.051	35.383
OH43	24.9	7.017	0.781	0.33	2.254	35.282
OH43E	8.603	8.389	2.21	0.43	5.267	24.899
OH7B	17.856	10.097	1.062	0.5	0.812	30.327
OS420	14.614	7.573	1.018	0.76	2.851	26.816
PA762	16.139	6.407	0.941	1.08	3.383	27.95
PA875	11.807	3.789	0.348	0.25	0.889	17.083
PA880	12.29	4.774	0.324	0.09	0.288	17.766
PA91	10.193	11.076	1.897	0.52	1.457	25.143
R109B	5.797	5.759	1.85	1.43	0.658	15.494
R168	10.005	4.586	0.358	0.12	0.308	15.377
R177	20.075	7.118	1.951	0.59	1.008	30.742
R229	15.967	6.084	1.5	1.06	1.123	25.734
R4	24.006	5.072	1.063	1.36	0.779	32.28
SC213R	11.008	8.481	1.42	0.32	3.696	24.925
SC357	13.368	11.892	0.839	0.1	0.866	27.065
SC55	2.087	0.142	0.601	0.87	7.294	10.994
SD40	9.87	12.062	1.775	0.07	1.648	25.425
SD44	13.917	5.12	0.662	0.22	1.953	21.872
T232	5.649	10.786	3.783	0.35	1.12	21.688
T234	7.004	0.479	0.096	0.12	0.808	8.507
T8	8.102	8.779	0.85	0.03	1.045	18.806
TX303	15.947	6.24	0.712	0.55	3.396	26.845
TZI18	14.396	21.598	3.466	0.36	2.36	42.18
TZI25	9.871	10.168	3.695	0.56	1.985	26.279
VA102	9.849	18.319	4.193	0.62	2.299	35.28
VA14	16.62	5	0.544	0.19	0.544	22.898
VA17	13.972	6.386	0.856	0.25	0.673	22.137
VA22	4.926	3.29	0.457	0.12	0.19	8.983
VA26	14.739	4.316	0.332	0.38	1.619	21.386
VA35	11.156	15.022	2.809	0.26	1.792	31.039
VA59	6.848	9.391		1	0.13	0.327

Table S5. PCR scores for the diverse maize association panel.

LINE	5'	S216	3'
3316	250	Control	399+502
3811	250:993	Control	144+502
4226	250+380	395+Control	399+502
4722	250	Control	399+502
A188	250	Control	399+502
A214N	250+380	395+Control	399+502
A239	250	Control	399+502
A272	250+380	395+Control	144+502
A4415	993	Control	399+502
A554	250	Control	399+502
A556	250+380	395+Control	399+502
A6	993	Control	399+502
A619	250	Control	144+502
A632	250	Control	$399+502$
A634	250+380	395+Control	399+502
A635	$250+380$	395+Control	399+502
A641	$250+380$	395+Control	399+502
A654	$250+380$	395+Control	399+502
A659	$250+380$	395+Control	399+502
A661	$250+380$	395+Control	399+502
A679	$250+380$	395+Control	$399+502$
A680	$250+380$	395+Control	399+502
A682	250+380	395+Control	399+502
AB28A	250	Null	399+502
B10	250+380	395+Control	399+502
B103	$250+380$	395+Control	399+502
B104	$250+380$	395+Control	$399+502$
B105	$250+380$	395+Control	399+502
B109	$250+380$	395+Control	399+502
B115	$250+380$	395+Control	399+502
B14A	$250+380$	395+Control	399+502
B164	$250+380$	395+Control	399+502
B2	$250+380$	395+Control	399+502
B37	250	Control	$399+502$
B46	250+380	395+Control	$399+502$
B52	$250+380$	395+Control	$399+502$
B57	250+380	395+Control	399+502
B64	250	Control	144+502
B68	250+380	395+Control	$399+502$
B73	$250+380$	395+Control	$399+502$
B73HTRHM	$250+380$	395+Control	399+502
B75	250+380	395+Control	399+502

B76	250	Control	$399+502$
B77	250	Control	144+502
B79	$250+380$	395+Control	$399+502$
B84	$250+380$	395+Control	$399+502$
B97	$250+380$	395+Control	$399+502$
C103	250	Control	$399+502$
C123	250	Control	$399+502$
C49A	250+380	395+Control	399+502
CH70130	250	Control	144+502
CH9	$250+380$	395+Control	$399+502$
CI. 7	250	Control	$399+502$
CI1872	250	Control	144+502
CI21E	250	Control	144+502
CI28A	250+380	395+Control	$399+502$
CI31A	250	Control	144+502
CI3A	250	Control	$399+502$
CI64	993	Control	144+502
CI66	250	Control	$399+502$
CI90C	250	Control	399+502
CI91B	$250+380$	395+Control	$399+502$
CM105	$250+380$	395+Control	$399+502$
CM174	$250+380$	395+Control	399+502
CM37	$250+380$	395+Control	$399+502$
CM7	250+380	395+Control	$399+502$
CML10	250:993	Control	$399+502$
CML103	Null	Control	$399+502$
CML108	250	Control	399+502
CML11	993	Control	$399+502$
CML14	250	395+Control	$399+502$
CML154Q	993	Control	$399+502$
CML157Q	993	Control	$399+502$
CML158Q	993	Control	$399+502$
CML218	250	Control	144+502
CML220	993	Control	$399+502$
CML228	150+280	Control	$399+502$
CML238	250	Control	144+502
CML247	250	Control	144+502
CML254	250	Control	144+502
CML258	993	Control	$399+502$
CML261	250	Control	$399+502$
CML264	993	Control	$399+502$
CML277	250	Control	144+502
CML281	250	Control	$399+502$
CML287	993	Control	399+502

CML311	250	Control	$399+502$
CML314	250	395+Control	$399+502$
CML321	250:993	Control	$399+502$
CML322	993	Control	$399+502$
CML323	250	Control	144+502
CML328	150+280	Control	399+502
CML331	Null	Control	$399+502$
CML332	Null	Control	$399+502$
CML333	250	Control	144+502
CML341	993	Control	$144+502$
CML38	250	Control	$144+502$
CML45	250	Control	$144+502$
CML5	993	Control	$399+502$
CML52	250	Control	$399+502$
CML61	250	Control	144+502
CML69	250	Control	$399+502$
CML77	250	Control	144+502
CML91	250	Control	$144+502$
CML92	250	Control	$144+502$
CMV3	250+380	Null	$399+502$
CO106	250	395+Control	399+502
CO125	250	Control	$399+502$
CO255	250	Control	$399+502$
D940Y	$250+380$	Control	$399+502$
DE1	$250+380$	395+Control	$399+502$
DE2	$250+380$	395+Control	$399+502$
DE3	250+380	395+Control	$399+502$
DE811	250	Control	$399+502$
E2558W	250+380	395+Control	$399+502$
EP1	250	Control	$399+502$
F2834T	250	Control	$399+502$
F44	250	Control	$399+502$
F6	250	Control	$399+502$
F7	250	Control	$399+502$
GA209	250	Control	$399+502$
GT112	250	Control	$399+502$
H105W	250	Control	$399+502$
H49	250+380	395+Control	$399+502$
H84	250	Control	$399+502$
H91	250+380	395+Control	$399+502$
H95	250+380	395+Control	$399+502$
H99	250	Control	$399+502$
HI27	250	Control	$399+502$
HP301	250	Control	399+502

HY	250+380	395+Control	$399+502$
I137TN	993	Control	$399+502$
I205	250+380	395+Control	$399+502$
I29	250	Control	399+502
IA2132	250+380	395+Control	399+502
IA5125	250+380	395+Control	$399+502$
IDS28	250+380	395+Control	$399+502$
IDS69	250	Control	$399+502$
IDS91	250	Control	$399+502$
IL101	250	Control	399+502
IL14H	250+380	395+Control	$399+502$
IL677A	993	Control	$399+502$
K148	250	Control	$399+502$
K4	250	Control	$399+502$
K55	250	Control	$399+502$
K64	993	Control	144+502
KI11	250	Control	$399+502$
KI14	250	Control	$399+502$
KI2021	250	Control	$399+502$
KI21	250	Control	399+502
KI3	993	Control	144+502
KI43	250	Control	$144+502$
KI44	250	Control	$144+502$
KY21	993	Control	$144+502$
KY226	250	Control	399+502
KY228	250:993	Control	$399+502$
L317	250+380	395+Control	$399+502$
L578	250	Control	$399+502$
M14	250	Control	$399+502$
M162W	250+380	395+Control	$399+502$
M37W	250	Control	144+502
MEF156552	250+380	395+Control	$399+502$
MO17	250	Control	399+502
MO18W	250+380	395+Control	$399+502$
MO1W	250+380	395+Control	$399+502$
MO24W	250	Control	$399+502$
MO44	250	Control	$399+502$
MO45	250+380	395+Control	$399+502$
MO46	$250+380$	395+Control	399+502
MO47	250+380	395+Control	$399+502$
MOG	250:993	Control	144+502
MP339	250	Control	$144+502$
MS1334	$250+380$	395+Control	$399+502$
MS153	250+380	395+Control	399+502

MS71	250+380	395+Control	399+502
MT42	250	395+Control	399+502
N192	250+380	395+Control	399+502
N28HT	250+380	395+Control	399+502
N6	250	Control	$399+502$
N7A	250+380	395+Control	399+502
NC222	250	Control	399+502
NC230	250	Control	399+502
NC232	993	Control	$399+502$
NC236	250	Control	$399+502$
NC238	250	Control	399+502
NC250	250	Control	399+502
NC258	250	Control	399+502
NC260	250	Control	399+502
NC262	250	Control	144+502
NC264	250+380	395+Control	399+502
NC290A	250	Control	144+502
NC294	250+380	395+Control	399+502
NC296	993	Control	144+502
NC296A	993	Control	144+502
NC298	250	Control	144+502
NC300	250	Control	144+502
NC302	250	Control	144+502
NC304	993	Control	399+502
NC306	250	Control	399+502
NC310	250+380	395+Control	399+502
NC314	250	Control	399+502
NC318	250+380	Null	144+502
NC320	993	Control	144+502
NC324	250	Control	399+502
NC326	250+380	395+Control	399+502
NC328	250+380	395+Control	399+502
NC33	250	Control	399+502
NC336	993	Control	144+502
NC338	250	Control	$144+502$
NC340	250	Control	$144+502$
NC342	250	Control	$399+502$
NC344	250:250+380	Control	$399+502$
NC346	993	Control	144+502
NC348	250	Control	$144+502$
NC350	250	Control	$144+502$
NC352	993	Control	144+502
NC354	993	Control	$399+502$
NC356	993	Control	144+502

NC358	250+380	395+Control	$399+502$
NC360	250	Control	$144+502$
NC362	250	Control	$144+502$
NC364	250	Control	$144+502$
NC366	250	Control	$399+502$
NC368	250+380	395+Control	$399+502$
ND246	$250+380$	395+Control	$399+502$
OH40B	250+380	395+Control	$399+502$
OH43	250+380	395+Control	$399+502$
OH43E	250	Control	144+502
OH603	250+380	395+Control	$399+502$
OH7B	250+380	395+Control	$399+502$
OS420	250	Control	$399+502$
P39	250+380	395+Control	$399+502$
PA762	250+380	395+Control	$399+502$
PA875	$250+380$	395+Control	$399+502$
PA880	$250+380$	395+Control	$399+502$
PA91	993	Control	144+502
R109B	250+380	395+Control	$399+502$
R168	$250+380$	395+Control	$399+502$
R177	$250+380$	395+Control	$399+502$
R229	250+380	395+Control	$399+502$
R4	250:250+380	395+Control	$399+502$
SA24	250	Control	$399+502$
SC213R	250	Control	$399+502$
SC357	250	Control	$399+502$
SC55	250	Control	399+502
SD40	250	Control	1,2
SD44	250+380	395+Control	$399+502$
SG1533	250	Control	$399+502$
SG18	250	Control	$399+502$
T232	250	Control	144+502
T234	250+380	395+Control	$399+502$
T8	250	Control	$399+502$
TX303	250+380	395+Control	$399+502$
TX601	250	Control	144+502
TZI10	250	Control	$144+502$
TZI11	250	Control	$399+502$
TZI16	993	Control	$399+502$
TZI18	993	Control	$144+502$
TZI25	150+280	395+Control	$399+502$
TZI8	250	Control	$399+502$
TZI9	250	Control	144+502
U267Y	250	Control	$144+502$

VA102	250	Control	$399+502$
VA14	$250+380$	$395+$ Control	$399+502$
VA17	$250+380$	$395+$ Control	$399+502$
VA22	$250+380$	$395+$ Control	$399+502$
VA26	$250+380$	$395+$ Control	$399+502$
VA35	250	Control	$399+502$
VA59	250	Control	$399+502$
VA85	$250+380$	$395+$ Control	$399+502$
VA99	993	Control	$144+502$
VAW6	250	Control	$399+502$
W117HT	250	$395+$ Control	$399+502$
W153R	$250+380$	$395+$ Control	$399+502$
W182B	250	Control	$399+502$
W22	$250+380$	$395+$ Control	$399+502$
W22 RR:STD	$250+380$	$395+$ Control	$399+502$
W64A	$250+380$	$395+$ Control	$399+502$
WD	250	Control	$399+502$
WF9	$250+380$	$395+$ Control	$399+502$
YU796_NS	$250+380$	$395+$ Control	$399+502$

Note: This table includes data for additional lines not used the analysis (e.g. white maize), but which could be useful for breeding efforts.

Supplementary References

S1. S. A. Flint-Garcia et al., Plant J 44, 1054 (2005).
S2. A. C. Kurilich, J. A. Juvik, Journal of Agricultural and Food Chemistry 47, 1948 (1999).
S3. A. C. Kurilich, J. A. Juvik, Journal of Liquid Chromatography \& Related Technologies 22, 2925 (1999).
S4. M. G. Neuffer, in The Maize Handbook M. Freeling, V. Walbot, Eds. (Springer-Verlag, New York, 1994) pp. 212-219.
S5. P. D. Fraser, P. M. Bramley, Prog Lipid Res 43, 228 (2004).
S6. J. Hirschberg, Current Opinion in Plant Biology 4, 210 (2001).
S7. Y. Fu et al., Proc Natl Acad Sci U S A 102, 12282 (2005).
S8. A. P. Chan et al., Nucl. Acids Res. 34, D771 (2006).
S9. J. M. Yu et al., Nature Genet. 38, 203 (2006).
S10. P. J. Bradbury et al., Bioinformatics 23, 2633 (2007).

[^0]: ${ }^{1}$ Institute for Genomic Diversity, Cornell University, Ithaca, NY 14853, USA. ${ }^{2}$ Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA. ${ }^{3}$ Boyce Thompson Institute, Ithaca, NY 14853, USA. ${ }^{4}$ DuPont Crop Genetics Research, Wilmington, DE 19880, USA. ${ }^{5}$ Department of Biology and Marine Biology, University of North Carolina, Wilmington, NC 28403, USA. ${ }^{6}$ Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY 10468, USA. ${ }^{7}$ The Graduate School and University Center, City University of New York (CUNY), New York, NY 10016, USA. ${ }^{8}$ International Maize and Wheat Improvement Center (CIMMYT), Apartado Postal 6-64, 06600 Mexico, DF, Mexico. ${ }^{9}$ U.S. Department of Agriculture, Agricultural Research Service, Plant, Soil and Nutrition Research Unit, Ithaca, NY 14853, USA. ${ }^{10}$ Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA.
 *Present address: Monsanto Company, Leesburg, GA 30903, USA.
 \dagger To whom correspondence should be addressed. E-mail: esb33@cornell.edu (E.S.B); trochefo@uiuc.edu (T.R.R.)

[^1]: Department of Genetics and the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA.
 *To whom correspondence should be addressed. E-mail: yfa@dartmouth.edu

